Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x+y+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=x+\frac{1}{4x}+y+\frac{1}{4y}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM: \(A\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{y}{4y}}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)=2+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT Schwarz dạng Engel: \(A\ge2+\frac{1}{4}.\frac{4}{x+y}\ge3\) (Do \(x+y\le1\))
Vậy Min A = 3. Dấu "=" xảy ra <=> x=y=1/2
A=\(\frac{x}{y}+\frac{y}{x}\)
Đặt \(\frac{x}{y}=a\left(a>0\right)\)
vì x,y>0 áp dụng bđt cô si
\(x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\)
\(1\ge x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\)
\(\frac{1}{4}\ge\frac{x}{y}\)
\(0< a\le\frac{1}{4}\)
Có A=\(a+\frac{1}{a}\left(với0< a\le\frac{1}{4}\right)\)
A=\(16a+\frac{1}{a}-15a\)
a>0 cô si
A\(\ge2\sqrt{16a\cdot\frac{1}{a}}-15\cdot\frac{1}{4}=\frac{17}{4}\)
D=XR x=y=1/2
Các bất đẳng thức đúng : \(ab\le\frac{\left(a+b\right)^2}{4};\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng ta được :
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\)
Ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
\(\frac{3}{2xy}\ge\frac{3}{2.\frac{\left(x+y\right)^2}{4}}=\frac{3}{2.\frac{1}{4}}=6\)
\(\Rightarrow A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}\ge4+6=10\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(A_{min}=10\) tại \(x=y=\frac{1}{2}\)
Vì a,b>0
A\(\ge2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}\cdot\sqrt{1+x^2y^2}\)
A\(\ge2\sqrt{\frac{1+x^2y^2}{xy}}\)
A\(\ge2\sqrt{\frac{1}{xy}+xy}\)
Đặt xy=a, a>0
Ta cs xy\(\le\frac{\left(x+y\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)
ĐK 0<a<\(\frac{1}{4}\)
\(\Leftrightarrow A\ge2\sqrt{\frac{1}{a}+a}\)
A\(\ge2\sqrt{16a+\frac{1}{a}-15a}\)
a>0, áp dụng bđt cô si
\(A\ge2\sqrt{2\sqrt{16a\cdot\frac{1}{a}}-\frac{15}{4}}\)
A\(\ge\sqrt{17}\)
Dấu = x ra a=b=0.5
\(A\ge\frac{1}{2}\left(x+y\right)^2+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2\ge\frac{1}{2}\left(x+y\right)^2+\frac{8}{\left(x+y\right)^2}\)
\(A\ge\frac{1}{2}\left(x+y\right)^2+\frac{1}{2\left(x+y\right)^2}+\frac{15}{2\left(x+y\right)^2}\ge1+\frac{15}{2}=\frac{17}{2}\)
\(A_{min}=\frac{17}{2}\) khi \(x=y=\frac{1}{2}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy