Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,y,z không âm thỏa mãn
\(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\Leftrightarrow x+y+z\ge3\)
\(P=\frac{a+b+c}{9}+\frac{1}{a+b+c}+\frac{8\left(a+b+c\right)}{9}\ge2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
P min = 10/3 khi a+b+c = 3
\(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)
\(\Rightarrow x+y+z\ge3\)
\(P=\frac{x+y+z}{9}+\frac{1}{x+y+z}+\frac{8\left(x+y+z\right)}{9}\ge2\sqrt{\frac{x+y+z}{9\left(x+y+z\right)}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\\z=0\end{matrix}\right.\)
\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)
Nên max M là \(\frac{3}{2}\) khi x=y=z=1
\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)
Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3
Do \(0< x;y;z\le1\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\)
\(\Leftrightarrow xz-x-z+1\ge0\)
\(\Leftrightarrow xz+1\ge x+z\Rightarrow1+y+xz\ge x+y+z\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\)
Hoàn toàn tương tự: \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\) ; \(\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\)
\(\Rightarrow VT\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\) (do \(x;y;z\le1\Rightarrow x+y+z\le3\))
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Ta có bất đẳng thức: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\)
Dấu \(=\)xảy ra khi \(a=b\).
Áp dụng ta được:
\(A=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}=\frac{1}{\left(x+1\right)^2}+\frac{1}{\frac{\left(y+2\right)^2}{2^2}}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{8}{\left(x+1+\frac{y+2}{2}\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}=\frac{256}{\left(2x+y+2z+10\right)^2}\)
Ta có: \(2x+4y+2z\le x^2+1+y^2+4+z^2+1=x^2+y^2+z^2+6\le3y+6\)
\(\Rightarrow2x+y+2z\le6\)
Suy ra \(A\ge\frac{256}{\left(6+10\right)^2}=1\)
Dấu \(=\)xảy ra khi \(x=z=1,y=2\).
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự và cộng lại:
\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)