\(\le1\)

A=\(x+y+\frac{1}{2}\left(\frac{1}{x}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(A=x+y+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)=x+\frac{1}{4x}+y+\frac{1}{4y}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT AM-GM: \(A\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{y}{4y}}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)=2+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT Schwarz dạng Engel: \(A\ge2+\frac{1}{4}.\frac{4}{x+y}\ge3\) (Do \(x+y\le1\))

Vậy Min A = 3. Dấu "=" xảy ra <=> x=y=1/2

23 tháng 7 2018

A=\(\frac{x}{y}+\frac{y}{x}\)

Đặt \(\frac{x}{y}=a\left(a>0\right)\)

vì x,y>0 áp dụng bđt cô si

\(x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\) 

\(1\ge x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\)

\(\frac{1}{4}\ge\frac{x}{y}\)

\(0< a\le\frac{1}{4}\)

Có A=\(a+\frac{1}{a}\left(với0< a\le\frac{1}{4}\right)\)

A=​\(16a+\frac{1}{a}-15a\)

a>0 cô si

A\(\ge2\sqrt{16a\cdot\frac{1}{a}}-15\cdot\frac{1}{4}=\frac{17}{4}\)

D=XR x=y=1/2

23 tháng 7 2018

Vì a,b>0

A\(\ge2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}\cdot\sqrt{1+x^2y^2}\)

A\(\ge2\sqrt{\frac{1+x^2y^2}{xy}}\)

A\(\ge2\sqrt{\frac{1}{xy}+xy}\)

Đặt xy=a, a>0

Ta cs xy\(\le\frac{\left(x+y\right)^2}{4}\le\frac{1^2}{4}=\frac{1}{4}\)

ĐK 0<a<\(\frac{1}{4}\)

\(\Leftrightarrow A\ge2\sqrt{\frac{1}{a}+a}\)

A\(\ge2\sqrt{16a+\frac{1}{a}-15a}\)

a>0, áp dụng bđt cô si

\(A\ge2\sqrt{2\sqrt{16a\cdot\frac{1}{a}}-\frac{15}{4}}\)

A\(\ge\sqrt{17}\)

Dấu = x ra a=b=0.5 

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

16 tháng 12 2017

\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)

28 tháng 9 2019

Ta co:

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{3}\ge\frac{\left(1+\frac{9}{x+y+z}\right)^2}{3}=\frac{100}{3}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)

Vay \(A_{min}=\frac{100}{3}\)khi \(x=y=z=\frac{1}{3}\)

30 tháng 7 2019

Áp dụng 2 bđt sau \(\hept{\begin{cases}a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\\\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\end{cases}}\)(tự chứng minh nhé)

\(A=\left(\frac{1}{x}+x\right)^2+\left(\frac{1}{y}+y\right)^2\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+x+y\right)^2}{2}\ge\frac{\left(\frac{4}{x+y}+1\right)^2}{2}=\frac{\left(4+1\right)^2}{2}=\frac{25}{2}\)

Dấu "=" tại x = y = 1/2

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)