Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) P có giá trị lớn nhất <=> 6 - m là số nguyên dương nhỏ nhất => 6 - m = 1 => m = 6 - 1 = 5
Vậy....
b) \(Q=\frac{-\left(n-3\right)+5}{n-3}=-1+\frac{5}{n-3}\)
Để Q nhỏ nhất thì \(\frac{5}{n-3}\) nhỏ nhất <=> n - 3 là số nguyên âm lớn nhất <=> n - 3 = -1 <=> n = -1 + 3 = 2
Vậy.....
a, P có GTLN=> 6-m là số nguyên dương nhỏ nhất =>6-m=1=>m=6-1=5
Vậy m=5
b,\(Q=\frac{-\left(n-3\right)+5}{n-3}=-1+\frac{5}{n-3}\)
Để Q nhỏ nhất thì \(\frac{5}{n-3}\)nhỏ nhất => n-3 là số nguyên âm lớn nhất => n-3=-1=> n=-1+3+2
Vậy n = 2
\(B=\frac{7n-8}{2n-3}=\frac{2\left(7n-8\right)}{2\left(2n-3\right)}=\frac{7\left(2n-3\right)+5}{2\left(2n-3\right)}=\frac{7}{2}+\frac{5}{4n-6}\)
Để \(\frac{7}{2}+\frac{5}{4n-6}\) đạt GTLN <=> \(4n-6\) đạt GTNN
Đặt \(4n-6=k\) (k thuộc N)
\(\Rightarrow n=\frac{k+6}{4}\)
Vì n thuộc N ; nhỏ nhất => k = 2
=> n = 2
=> \(B_{max}=6\) tại n = 2
:Ta có"
\(\frac{7n-8}{2n-3}=\frac{3.\left(2n-3\right)+n+1}{2n-3}=3+\frac{n+1}{2n-3}\)
Vậy để B lớn nhất thì \(\frac{n+1}{2n-3}\)lớn nhất hay (2n-3) nhỏ nhất hay n nhỏ nhất
Ta có: Nếu n<2 thì (2n-3)<0
Nếu n\(\ge\)2 thì (2n-3)>0
Vì n nhỏ nhất, n là số tự nhiên và n\(\ge\)2
=> n=2
Vậy để B đạt giá trị lớn nhất thì n=2
a) P lớn nhất => P >0
cần 6-m nhỏ nhất lớn hơn 0
m nguyên => m=5
Pmax=2
b)
Q đạt nhỏ nhất => Q<0
\(Q=\frac{5-\left(n-3\right)}{n-3}=-1+\frac{5}{n-3}\)
\(\frac{5}{n-3}\) đạt giá trị (-) nhỏ nhất=> n=2
Qmin=-1-5=-6