K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

m(m -3)x - 2(2x - 2) = m

(m2 - 3m . x ) + (-4x - 4) = m

-4xm2 + 12xm - 4x2 - 4m2 + 12m - 4x = m

-4x . (m2 + 12m - x - m2 + 12m) = m

-4x . [(m2 - m2) + (12 + 12) - x] = m

-4x . (24 - x) = m

-96x + 4x2 = m

x. (-96 + 4x) = m

(x + 4x) - 96 = m

5x - 96 = m

\(\rightarrow\)5x = 96 (1)

x = 19,2

\(\rightarrow\)5 . 19,2 - 96 = 0

m = 0

(do mình ko giỏi về mấy cái thể loại toán như này nên có thể làm sai mong bạn thông cảm)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

6 tháng 3 2023

a, m\(x\) -2\(x\) + 3 = 0

Với m  = -4 ta có :

-4\(x\) - 2\(x\) + 3 = 0

-6\(x\)  + 3 = 0

6\(x\) = 3

\(x\) = 3 : 6

\(x\) = \(\dfrac{1}{2}\)

b,  Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0

                   2m - 1 = 0

                  2m = 1

                     m = \(\dfrac{1}{2}\) 

c, m\(x\) - 2\(x\) + 3 = 0

   \(x\)( m -2) + 3 = 0

  \(x\) = \(\dfrac{-3}{m-2}\)

   Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2

d, Để phương trình có nghiệm nguyên thì:   -3 ⋮ m -2

   m - 2 \(\in\) { - 3; -1; 1; 3}

  m \(\in\) { -1; 1; 3; 5}

 

NV
23 tháng 1 2021

\(m^2x-2m+2mx+2-3x=0\)

\(\Leftrightarrow\left(m^2+2m-3\right)x=2\left(m-1\right)\)

\(\Leftrightarrow\left(m-1\right)\left(m+3\right)x=2\left(m-1\right)\)

- Với \(m=1\) pt có vô số nghiệm (ktm)

- Với \(m\ne1\Rightarrow x=\dfrac{2}{m+3}>0\Rightarrow m>-3\)

Vậy để pt có nghiệm dương duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\ne1\end{matrix}\right.\)

a) Thay m=2 vào phương trình, ta được:

\(2^2+4\cdot3-3=2^2+x\)

\(\Leftrightarrow x+4=4+12-3\)

\(\Leftrightarrow x+4=13\)

hay x=9

Vậy: Khi m=2 thì x=9

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Lời giải:

Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$

a) Với $m=2$ thì $x=4.2-3=5$

Vậy $x=5$

b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$

c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$

 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m+1}{m^2}\ne\dfrac{-2}{-1}=2\)

=>\(2m^2\ne m+1\)

=>\(2m^2-m-1\ne0\)

=>\(\left(m-1\right)\left(2m+1\right)\ne0\)

=>\(m\notin\left\{1;-\dfrac{1}{2}\right\}\)

\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2\cdot x-2y=2m^2+4m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m^2-m-1\right)=2m^2+4m-m+1\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot\left(m-1\right)\left(2m+1\right)=2m^2+3m+1=\left(m+1\right)\left(2m+1\right)\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\left(m+1\right)x-\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\dfrac{m^2+2m+1-\left(m-1\right)^2}{m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\y=\dfrac{m^2+2m+1-m^2+2m-1}{2m-2}=\dfrac{4m}{2m-2}=\dfrac{2m}{m-1}\end{matrix}\right.\)

Để x,y đều nguyên thì \(\left\{{}\begin{matrix}m+1⋮m-1\\2m⋮m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-1+2⋮m-1\\2m-2+2⋮m-1\end{matrix}\right.\)

=>\(2⋮m-1\)

=>\(m-1\in\left\{1;-1;2;-2\right\}\)

=>\(m\in\left\{2;0;3;-1\right\}\)

 

NV
18 tháng 1

\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2x-2y=2m^2+4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m^2-m-1\right)x=2m^2+3m+1\\y=m^2x-m^2-2m\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(2m^2-m-1\ne0\Rightarrow m\ne\left\{1;-\dfrac{1}{2}\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2m^2-2m-1}{2m^2+3m+1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{\left(m+1\right)\left(2m+1\right)}=\dfrac{m-1}{m+1}\\y=m^2x-m^2-2m=\dfrac{-4m^2-2m}{m+1}\end{matrix}\right.\)

Để x nguyên \(\Rightarrow\dfrac{m-1}{m+1}\in Z\Rightarrow1-\dfrac{2}{m+1}\in Z\)

\(\Rightarrow\dfrac{2}{m+1}\in Z\)

\(\Rightarrow m+1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow m=\left\{-3;-2;0;1\right\}\)

Thay vào y thấy đều thỏa mãn y nguyên.

Vậy ...

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2