K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay m=2 vào phương trình, ta được:

\(2^2+4\cdot3-3=2^2+x\)

\(\Leftrightarrow x+4=4+12-3\)

\(\Leftrightarrow x+4=13\)

hay x=9

Vậy: Khi m=2 thì x=9

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Lời giải:

Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$

a) Với $m=2$ thì $x=4.2-3=5$

Vậy $x=5$

b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$

c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$

 

6 tháng 3 2023

a, m\(x\) -2\(x\) + 3 = 0

Với m  = -4 ta có :

-4\(x\) - 2\(x\) + 3 = 0

-6\(x\)  + 3 = 0

6\(x\) = 3

\(x\) = 3 : 6

\(x\) = \(\dfrac{1}{2}\)

b,  Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0

                   2m - 1 = 0

                  2m = 1

                     m = \(\dfrac{1}{2}\) 

c, m\(x\) - 2\(x\) + 3 = 0

   \(x\)( m -2) + 3 = 0

  \(x\) = \(\dfrac{-3}{m-2}\)

   Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2

d, Để phương trình có nghiệm nguyên thì:   -3 ⋮ m -2

   m - 2 \(\in\) { - 3; -1; 1; 3}

  m \(\in\) { -1; 1; 3; 5}

 

loading...  loading...  

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

21 tháng 2 2020

a)Thay m=-1 vào phương trình ta đc:

\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)

\(\Leftrightarrow4x-4x+3=3\)

\(\Leftrightarrow0x=0\)(Luôn đúng)

\(\Leftrightarrow\)Pt có vô số nghiệm

Vậy pt có vô số nghiệm.

b)Thay x=2 vào phương trình ta  có:

\(4m^2.2-4.2-3m=3\)

\(\Leftrightarrow8m^2-8-3m=3\)

\(\Leftrightarrow8m^2-3m-11=0\)

\(\Leftrightarrow8m^2+8m-11m-11=0\)

\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)

Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}

c)Ta có:

\(5x-\left(3x-2\right)=6\)

\(\Leftrightarrow5x-3x+2=6\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)

Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)

\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)

Thay x=2 vào pt trên ta đc:

\(4m^2.2-4.2-3m=3\)(Giống câu b)

Vậy m=-1,m=11/8...

d)Có:\(4m^2x-4x-3m=3\)

\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)

Để pt vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt vô nghiệm.

20 tháng 3 2018

bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra 

bài 1 câu c "

\(4x^2-25+k^2+4kx=0.\)

thay x=-2 vào ta được

\(16-25+k^2+-8k=0\)

\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)

\(k\left(k+1\right)-9\left(k+1\right)=0\)

\(\left(k+1\right)\left(k-9\right)=0\)

vậy k=1 , 9 thì pt nhận x=-2

bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra 

bài 3 cũng éo hiểu xác định a ? a ở đâu

1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm

. kết luận của chúa Pain đề như ###

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m+1}{m^2}\ne\dfrac{-2}{-1}=2\)

=>\(2m^2\ne m+1\)

=>\(2m^2-m-1\ne0\)

=>\(\left(m-1\right)\left(2m+1\right)\ne0\)

=>\(m\notin\left\{1;-\dfrac{1}{2}\right\}\)

\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2\cdot x-2y=2m^2+4m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m^2-m-1\right)=2m^2+4m-m+1\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot\left(m-1\right)\left(2m+1\right)=2m^2+3m+1=\left(m+1\right)\left(2m+1\right)\\\left(m+1\right)x-2y=m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\left(m+1\right)x-\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\2y=\dfrac{m^2+2m+1-\left(m-1\right)^2}{m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m-1}\\y=\dfrac{m^2+2m+1-m^2+2m-1}{2m-2}=\dfrac{4m}{2m-2}=\dfrac{2m}{m-1}\end{matrix}\right.\)

Để x,y đều nguyên thì \(\left\{{}\begin{matrix}m+1⋮m-1\\2m⋮m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-1+2⋮m-1\\2m-2+2⋮m-1\end{matrix}\right.\)

=>\(2⋮m-1\)

=>\(m-1\in\left\{1;-1;2;-2\right\}\)

=>\(m\in\left\{2;0;3;-1\right\}\)

 

NV
18 tháng 1

\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\2m^2x-2y=2m^2+4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m^2-m-1\right)x=2m^2+3m+1\\y=m^2x-m^2-2m\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(2m^2-m-1\ne0\Rightarrow m\ne\left\{1;-\dfrac{1}{2}\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{2m^2-2m-1}{2m^2+3m+1}=\dfrac{\left(m-1\right)\left(2m+1\right)}{\left(m+1\right)\left(2m+1\right)}=\dfrac{m-1}{m+1}\\y=m^2x-m^2-2m=\dfrac{-4m^2-2m}{m+1}\end{matrix}\right.\)

Để x nguyên \(\Rightarrow\dfrac{m-1}{m+1}\in Z\Rightarrow1-\dfrac{2}{m+1}\in Z\)

\(\Rightarrow\dfrac{2}{m+1}\in Z\)

\(\Rightarrow m+1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow m=\left\{-3;-2;0;1\right\}\)

Thay vào y thấy đều thỏa mãn y nguyên.

Vậy ...

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\)

\(\Leftrightarrow\left(2m-2\right)x=2\)

\(\Leftrightarrow x=\dfrac{2}{2m-2}\)

Để phương trình đã cho có nghiệm âm thì:

\(\dfrac{2}{2m-2}< 0\)

\(\Leftrightarrow2m-2< 0\)

\(\Leftrightarrow2m< 2\)

\(\Leftrightarrow m< 1\)

Vậy \(m< 1\) thì phương trình đã cho có nghiệm âm.

10 tháng 5 2021

\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)

\(\Leftrightarrow2x^2+mx-2x-m-2x^2+mx+m-2=0\)

\(\Leftrightarrow\left(2m-2\right)x-2=0\left(1\right)\)

+) Nếu \(m=1\)\(\rightarrow\left(1\right)\Leftrightarrow0x-2=0\left(V_{n_o}\right)\)

+) Nếu \(m\ne1\rightarrow x=\dfrac{2}{2m-2}\)

Để \(x< 0\Leftrightarrow\dfrac{2}{2m-2}< 0\) mà \(2>0\Leftrightarrow2m-2< 0\Leftrightarrow m< 1\)