K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Để `A(x)\vdotsB(x)` thì `2x^3-x^2+2x^2-x-3x+3/2+m-3/2\vdots2x-1`

`<=>m-3/2=0`

`<=>m=3/2` 

Vậy `m=3/2`

 

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}

a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7 
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp: 
TH1: 2x-3 = -1 <=> x = 1 
TH2: 2x-3 = 1 <=> x = 2 
TH3: 2x-3 = -7 <=> x = -2 
TH4: 2x-3 = 7 <=> x = 5 
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5} 

b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5 
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp) 
TH1: x-3 = -5 <=> x = -2 
TH2: x-3 = -1 <=> x = 2 
TH3: x-3 = 1 <=> x = 4 
TH4: x-3 = 5 <=> x = 8 
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:

a.

$A+B=(5x^2-7x+2)+(4x^2+3x-1)=9x^2-4x+1$
$A-B=(5x^2-7x+2)-(4x^2+3x-1)=x^2-10x+3$

b. 

$A(x)=2x^2-x+m=x(2x-5)+4x+m=x(2x-5)+2(2x-5)+m+10$

$=B(x)(x+2)+m+10$

Để $A(x)\vdots B(x)$ thì $m+10=0\Leftrightarrow m=-10$

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
$2x^3-4x^2+a-10=2x^2(x-2)+a-10$

$\Rightarrow$ để $2x^3-4x^2+a-10$ chia hết cho $x-2$ thì $a-10=0$
$\Leftrightarrow a=10$

18 tháng 4 2023

hơi khó nhìn 😥

10 tháng 1 2023

\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)

\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)

-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6

3 tháng 5 2023

a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)

Bậc của P(x) là 3

\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)

Bậc của Q(x) là 3

b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)

3 tháng 5 2023

Mình cảm ơn

a: A(x)=2x^3+x^2+4x+1

B(x)=-2x^3+x^2+3x+2

b: M(x)=A(x)+B(x)

=2x^3+x^2+4x+1-2x^3+x^2+3x+2

=2x^2+7x+3

c: M(x)=0

=>2x^2+7x+3=0

=>2x^2+6x+x+3=0

=>(x+3)(2x+1)=0

=>x=-3 hoặc x=-1/2

29 tháng 3 2020

a, Ta có : \(A_{\left(x\right)}=3x^2+5x^3+x-2x^2-x^3+1-4x^3-2x-3\)

=> \(A_{\left(x\right)}=x^2-x-2\)

b, - Để đa thức A bằng đa thức B thì :\(x^2-x-2=2x-2\)

=> \(x^2-x-2-2x+2=0\)

=> \(x^2-3x=0\)

=> \(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

29 tháng 3 2020

rút gọn sai roài