Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Ta có f(x) + 2g(x)
= x3 - 2x2 + 2x- 5 + 2(-x3 + 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + (-2x3) + 6x2 - 4x + 8
=-x3 + 4x2 - 2x + 3 (0.5 điểm)
2f(x) - g(x) = x3 - 2x2 + 2x- 5 - 2(-x3+ 3x2 - 2x + 4)
= x3 - 2x2 + 2x - 5 + 2x3 - 6x2 + 4x - 8
= 3x3 - 8x2 + 6x - 13 (0.5 điểm)
Ta có:\(f\left(x\right)-h\left(x\right)=g\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8-x^4-x^2-3x-9\)
\(=x^4+5x^3+x^2-4x-1.\)
Vậy, đa thức cần tìm là: \(h\left(x\right)=x^4+5x^3+x^2-4x-1.\)
Ta có: \(h\left(x\right)-g\left(x\right)=f\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)+\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8+x^4-x^2+3x+9\)
\(=3x^4+5x^3-x^2+2x+17\)
Vậy, đa thức cần tìm là:\(h\left(x\right)=3x^4+5x^3-x^2+2x+17.\)
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
a) Ta có: \(f\left(x\right)=5x^4+x^3-x+11+x^4-5x^3\)
\(=\left(5x^4+x^4\right)+\left(x^3-5x^3\right)-x+11\)
\(=6x^4-4x^3-x+11\)
Ta có: \(g\left(x\right)=2x^2+3x^4+9-4x^2-4x^3+2x^4-x\)
\(=\left(3x^4+2x^4\right)-4x^3+\left(2x^2-4x^2\right)-x+9\)
\(=5x^4-4x^3-2x^2-x+9\)
b) Ta có: h(x)=f(x)-g(x)
\(=6x^4-4x^3-x+11-5x^4+4x^3+2x^2+x-9\)
\(=x^4+2x^2+2\)
Xét [\(f\left(x\right)+g\left(x\right)\)]+[\(f\left(x\right)-g\left(x\right)\)]=\(\left[2x^4+5x^2-3x\right]\)+\(\left[x^4-x^2+2x\right]\)
\(2f\left(x\right)=2x^4+5x^2-3x+x^4-x^2+2x\)
\(2f\left(x\right)=3x^4+4x^2-x\)
\(\Rightarrow f\left(x\right)=\dfrac{3x^4+4x^2-x}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^4+2x^2-\dfrac{1}{2}x\)
Xét \(\left[f\left(x\right)+g\left(x\right)\right]-\left[f\left(x\right)-g\left(x\right)\right]=\)\(\left[2x^4+5x^2-3x\right]\)\(-\)\(\left[x^4-x^2+2x\right]\)
\(2g\left(x\right)=\)\(2x^4+5x^2-3x-x^4+x^2-2x\)
\(2g\left(x\right)=x^4+6x^2-5x\)
\(\Rightarrow g\left(x\right)=\dfrac{x^4+6x^2-5x}{2}\)
\(\Rightarrow g\left(x\right)=\dfrac{1}{2}x^4+3x^2-\dfrac{5}{2}x\)
f(x) + g(x) = 2x4 + 2x2
f(x) - g(x) = x4 - x2 + 2x
suy ra : f(x) = [ ( 2x4 + 2x2 ) + ( x4 - x2 + 2x ) ] : 2 = \(\frac{3x^4+x^2+2x}{2}\)
g(x) = [ ( 2x4 + 2x2 ) - ( x4 - x2 + 2x ) ] : 2 = \(\frac{x^4+3x^2-2x}{2}\)