K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)

Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)

Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)

Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1

Vậy minP=\(\frac{3}{2}\)khi x=y=z=1

2 tháng 1 2020

BĐT\(\Leftrightarrow\left(\frac{1}{x-1}\right)^3+\left(\frac{x-1}{y}\right)^3+\left(\frac{1}{y}\right)^3\ge3\left(\frac{1}{x-1}+\frac{x-1}{y}+\frac{1}{y}-2\right)\)

Đặt \(\left(\frac{1}{x-1};\frac{x-1}{y};\frac{1}{y}\right)=\left(a;b;c\right)\)

BĐT cần cm \(\Leftrightarrow a^3+b^3+c^3\ge3\left(a+b+c-2\right)\)

\(\Leftrightarrow\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3\left(a+b+c\right)\)

Đúng theo AM-GM --> đpcm

NV
6 tháng 2 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

NV
6 tháng 2 2021

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

NV
13 tháng 3 2020

a/ ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow3\sqrt{x+8}\ge3\left(\sqrt{x+3}+\sqrt{x}\right)\)

\(\Leftrightarrow\sqrt{x+8}\ge\sqrt{x+3}+\sqrt{x}\)

\(\Leftrightarrow x+8\ge2x+3+2\sqrt{x^2+3x}\)

\(\Leftrightarrow5-x\ge2\sqrt{x^2+3x}\)

- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\le5\) hai vế ko âm, bình phương:

\(x^2-10x+25\ge4x^2+12x\)

\(\Leftrightarrow3x^2+22x-25\le0\Rightarrow-\frac{25}{3}\le x\le1\)

Vậy nghiệm của BPT đã cho là \(0\le x\le1\)

NV
13 tháng 3 2020

b/ ĐKXĐ: \(x>0\)

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)< 2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\Rightarrow x+\frac{1}{4x}=t^2-1\)

BPT trở thành:

\(5t< 2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2>0\Rightarrow\left[{}\begin{matrix}t>2\\t< \frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}0\le x< \frac{3-2\sqrt{2}}{2}\\x>\frac{3+2\sqrt{2}}{2}\end{matrix}\right.\)

24 tháng 9 2019

tìm GTLN

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1