Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bỏ dấu giá trị tuyệt đối:
x \(\le\) 2008 | 2008 < x < 2009 | 2009 \(\le\) x < 2010 | 2010\(\le\)x < 2011 | x \(\ge\) 2011 | |
|x- 2008| | 2008-x | x-2008 | x-2008 | x-2008 | x-2008 |
|x-2009| | 2009-x | 2009-x | x-2009 | x-2009 | x-2009 |
|x-2010| | 2010-x | 2010 - x | 2010 - x | x - 2010 | x - 2010 |
|x-2011| | 2011 - x | 2011 - x | 2011 - x | 2011 - x | x - 2001 |
=>
+) Nếu x \(\le\) 2008 => A = 2008 - x + 2009 - x + 2010 - x + 2011 - x + 2008 = 10 046 - 4x \(\ge\) 10 046 - 4.2008 = 2014
+) Nếu 2008 < x < 2009 => A = x - 2008 + 2009 - x + 2010 - x + 2011 - x + 2008 = 6030 - 2x > 6030 - 2.2009 = 2012
+) Nếu 2009 \(\le\) x < 2010 => A = x - 2008 + x - 2009 + 2010 - x + 2011 - x + 2008 = 2012
+) Nếu 2010 \(\le\) x < 2011 => A = x - 2008 + x - 2009 + x - 2010 + 2011 - x + 2008 = 2x - 2008 \(\ge\) 2.2010 - 2008 = 2012
+) Nếu x \(\ge\) 2011 => A = x - 2008 + x - 2009 + x - 2010 + x - 2011 + 2008 = 4x - 6030 \(\ge\) 4.2011 - 6030 = 2014
Từ các trường hợp trên => A nhỏ nhất bằng 2012 khi x = 2009 ; hoặc x = 2010
Lời giải:
Sử dụng BĐT sau:
Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:
$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$
$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow A\geq 4+0=4$
Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$
Hay khi $x=2020$
Đoạn dấu \(\left|x-2008\right|+\left|8-x\right|\le\left|x-2008+8-x\right|\) nhầm rồi ạ. Phải là dấu \(\ge\)
G = |\(x\) - 2008| + |\(x\) - 8|
Vì |\(x-8\)| = |8 - \(x\)|
⇒ G = |\(x\) - 2008| + |\(x\) - 8| = |\(x\) - 2008| + |8 - \(x\)|
G = |\(x\) - 2008| + |8-\(x\)| \(\ge\) |\(x-2008\) + 8 - \(x\)| = 2000
Dấu bằng xảy ra ⇔ (\(x\) - 2008).(8 - \(x\)) ≥ 0
Lập bảng ta có:
\(x\) | 8 2008 |
8 - \(x\) | + 0 - - |
\(x\) - 2008 | - - 0 + |
(\(x\) - 8).(\(x\) - 2008) | - 0 + 0 - |
Theo bảng trên ta có: Gmin = 2000 ⇔ 8 ≤ \(x\) ≤ 2008
Ta có:
a) A = |x - 2| + |x - 4| + 2017|
=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019
Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0
<=> 2 \(\le\)x \(\le\)4
Vậy MinA = 2019 <=> 2 \(\le\)x \(\)4
b) Ta có: B = |2019 - x| + |2020 - x|
=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1
Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0
<=> 2019 \(\le\)x \(\le\)2020
Vậy MinB = 1 <=> 2019 \(\le\)x \(\le\)2020
Do \(\left|a\right|=\left|-a\right|\) nên:
\( A=\left|x-2008\right|+\left|x-2020\right|\)
\(=\left|x-2008\right|+\left|2020-x\right|\)
\(\ge\left|x-2008+2020-x\right|=12\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2008\right)\left(2020-x\right)\ge0\)
hay \(\orbr{\begin{cases}x-2008\ge0\\2020-x\ge0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge2008\\x\le2020\end{cases}\Leftrightarrow2008\le}x\le2020\)
Thêm xíu:
Vậy \(A_{min}=12\Leftrightarrow2008\le x\le2020\)