K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

27 tháng 1 2023

vì sao dấu "=" xảy ra khi ab ≥0 thế ạ ?

 

29 tháng 4 2023

mong các bạn trả lời nhanh

 

11 tháng 11 2021

Ta có \(\left|x+2020\right|\ge0\)

dấu "=" xảy ra \(\Leftrightarrow x=-2020\)

\(\Rightarrow\left|x+2020\right|+75\ge75\)

dấu "=" xảy ra \(\Leftrightarrow x=-2020\)

Vậy \(A_{min}\Leftrightarrow x=-2020\)

9 tháng 6 2021

`|x-1|+2020|x-2|+|x-3|`

`=|x-1|+|3-x|+2020|x-2|`

Áp dụng BĐT `|A|+|B|>=|A+B|`

`=>|x-1|+|3-x|>=|x-1+3-x|=2`

Mà `|x-2|>=0=>2020|x-2|>=0`

`=>|x-1|+2020|x-2|+|x-3|>=2`

Dấu "=" xảy ra khi $\begin{cases}(x-1)(3-x) \ge 0\\x-2=0\\\end{cases}$

`<=>` $\begin{cases}(x-1)(x-3) \le 0\\x=2\\\end{cases}$

`<=>` $\begin{cases}1 \le x \le 3\\x=2\\\end{cases}$

`<=>x=2`

28 tháng 4 2016

ê hoàng tử mt đừng chép bài tau chứ

ko bít hèn à
 

28 tháng 4 2016

đơn giản ý mà

Amin=2016 khi x=4 hoặc 2020
 

17 tháng 11 2018

Do \(\left|a\right|=\left|-a\right|\) nên:

\( A=\left|x-2008\right|+\left|x-2020\right|\)

\(=\left|x-2008\right|+\left|2020-x\right|\)

\(\ge\left|x-2008+2020-x\right|=12\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2008\right)\left(2020-x\right)\ge0\)

hay \(\orbr{\begin{cases}x-2008\ge0\\2020-x\ge0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge2008\\x\le2020\end{cases}\Leftrightarrow2008\le}x\le2020\)

17 tháng 11 2018

Thêm xíu:

Vậy \(A_{min}=12\Leftrightarrow2008\le x\le2020\)

25 tháng 9 2019

Ta có:

a) A = |x - 2| + |x - 4| + 2017|

=> A = |x - 2| + |4 - x| + 2017 \(\ge\)|x - 2 + 4 - x| + 2017 = |2| + 2017=2019

Dấu "=" xảy ra <=> (x - 2)(4 - x) \(\ge\)0

<=> 2 \(\le\)\(\le\)4

Vậy MinA = 2019 <=> 2 \(\le\)\(\)4

b) Ta có: B = |2019 - x| + |2020 - x|

=> B = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| =  1

Dấu "=" xảy ra <=> (x - 2019)(2020 - x) \(\ge\)0

<=> 2019 \(\le\)\(\le\)2020

Vậy MinB = 1 <=> 2019 \(\le\)\(\le\)2020

25 tháng 9 2019

ta có 

        /x-2/> hoặc= x-2

       /x-4/= /4-x/> hoặc=4-x      

=> /x-2/+/x-4/+2017> hoặc= (x-2)+(4-x)+2017=2019

           hay A> hoặc= 2019

           => GTNN của A là 2019

b,

       Vì /2019-x/ > hoặc= 2019-x

            /2020-x/=/x-2020/> hoặc=x-2020

      =>/2019-x/+/2020-x/>hoặc=(2019-x)+(x-2020)=-1

         Hay B> hoặc=-1

               =>B=1