Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét hiệu
\(\dfrac{x}{y}+\dfrac{y}{x}-2>0\)
\(\Leftrightarrow\dfrac{x^2}{xy}+\dfrac{y^2}{xy}-\dfrac{2xy}{xy}>0\)
\(\Leftrightarrow\dfrac{x^2-2xy+y^2}{xy}>0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{xy}>0\) (luôn đúng )
=> đpcm
\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)
\(A_{min}=-1\) khi \(2x+y=0\)
Ta có:
\(2P=\frac{2x^2}{y^2}+\frac{2y^2}{x^2}-6\left(\frac{x}{y}+\frac{y}{x}\right)+10\)
\(=\left(\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\right)-4\left(\frac{x}{y}+\frac{y}{x}\right)+4+\left(\frac{x^2}{y^2}-2\frac{x}{y}+1\right)+\left(\frac{y^2}{x^2}-2\frac{y}{x}+1\right)+2\)
\(=\left(\frac{x}{y}+\frac{y}{x}-2\right)^2+\left(\frac{x}{y}-1\right)^2+\left(\frac{y}{x}-1\right)^2+2\)
\(\ge2\)
\(\Rightarrow P\ge1\)
Dấu = xảy ra khi x = y
áp dụng BĐT côsi ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2;\frac{x}{y}+\frac{y}{x}>=2\)
=> B>= 2-3*2+5=1
Dấu bằng khi x=y=1
x,y dương chứ nhỉ :))
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)
=> \(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge2-3\cdot2+5=1\)
Đẳng thức xảy ra khi x = y
Vậy MinP = 1