Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3x^2-2xy}{x^2+2xy+y^2}=\dfrac{15x^2-10xy}{5\left(x^2+2xy+y^2\right)}=\dfrac{-\left(x^2+2xy+y^2\right)+16x^2-8xy+y^2}{5\left(x^2+2xy+y^2\right)}\)
\(A=-\dfrac{1}{5}+\dfrac{\left(4x-y\right)^2}{5\left(x+y\right)^2}\ge-\dfrac{1}{5}\)
\(A_{min}=-\dfrac{1}{5}\) khi \(4x-y=0\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Mình sửa lại đề cho đúng nhé
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)
Thế vô M ta được
\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
\(P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\)
\(P=\frac{\left[\left(\frac{x}{\sqrt{x^2+2yz}}\right)^2+\left(\frac{y}{\sqrt{y^2+2xz}}\right)^2+\left(\frac{z}{\sqrt{z^2+2xy}}\right)^2\right]\left[\sqrt{x^2+2yz}^2+\sqrt{y^2+2xz}^2+\sqrt{z^2+2xy}^2\right]}{x^2+2yz+y^2+2xz+z^2+2xy}\)
\(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)(Bunyakovski)
Dấu "=" xảy ra <=> \(\frac{x}{x^2+2yz}=\frac{y}{y^2+2xz}=\frac{z}{z^2+2xy}\Leftrightarrow x=y=z\)
Vậy GTNN P=1 <=> x=y=z
Ngay ở trên hai cái [...] [...] nhân với nhau ấy, tại nó dài quá
\(A=\frac{x^2+y^2}{x^2+2xy+y^2}\)
\(2A=\frac{2x^2+2y^2}{\left(x+y\right)^2}\)
\(2A=\frac{x^2+2xy+y^2+x^2-2xy+y^2}{\left(x+y\right)^2}\)
\(2A=1+\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\)
Do \(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge0\forall xy\)
\(\Rightarrow2A=1+\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\ge1\)
\(\Leftrightarrow A\ge\frac{1}{2}\)
\(\Rightarrow A_{min}=\frac{1}{2}\Leftrightarrow x=y\)
Chúc bạn học tốt !!!
\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)
\(A_{min}=-1\) khi \(2x+y=0\)