Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$
$=(3x+y)^2-2(3x+y)+y^2+6y+17$
$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$
$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$
Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$
$\Leftrightarrow y=-3; x=\frac{4}{3}$
$A$ không có max bạn nhé.
\(A=9x^2+2y^2+6xy-6x+11\)
=> \(A=9x^2+6x\left(y-1\right)+2y^2+11\)
=> \(A=\left(3x\right)^2+2.3x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2+11\)
=> \(A=\left(3x+y-1\right)^2-\left(y^2-2y+1\right)+2y^2+11\)
=> \(A=\left(3x+y-1\right)^2-y^2+2y-1+2y^2+11\)
=> \(A=\left(3x+y-1\right)^2+y^2+2y+1+9\)
=> \(A=\left(3x+y-1\right)^2+\left(y+1\right)^2+9\)
Có \(\left(3x+y-1\right)^2\ge0\)với mọi x; y
\(\left(y+1\right)^2\ge0\)với mọi y
=> \(\left(3x+y-1\right)^2+\left(y+1\right)^2+9\ge9\)với mọi x; y
=> \(A\ge9\)với mọi x; y
Dấu "=" xảy ra <=> 3x + y - 1 = 0 và y + 1 = 0
<=> 3x + y = 1 và y = -1
<=> x = -4 và y = -1
KL: Amin = 9 <=> x = -4 và y = -1
\(R=9x^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)
Ta thấy \(\left(3x-y\right)^2\ge0\)
\(y^2\ge0\)
suy ra \(R\ge0+0+5=5\)
dấu bằng xảy ra khi y=0 và 3x-y=0 hay x=0 và y=0
\(9x^2-6xy+2y^2+5=\left(3x\right)^2-6xy+y^2+y^2+5=\left(3x-y\right)^2+y^2+5\)
mả \(\left(3xy-y\right)^2+y^2\ge0\)
nen \(\left(3x+y\right)^2+y^2+5\ge5\)
dau bang say ra khi \(\left(3x+y\right)^2+y^2=0\)
vậy gái trị nhỏ nhất của biểu thức là 5
A = 5x² + 2y² + 6xy + 2x + 6y + 32
⇒ 2A = 10x² + 4y² + 12xy + 4x + 12y + 64
= (4y² + 12xy + 9x²) + x² + 4x + 12y + 64
= (2y + 3x)² + x² - 14x + 18x + 12y + 9 + 49 + 6
= (3x + 2y)² + (18x + 12y) + 9 + (x² - 14x + 49) + 6
= [ (3x + 2y)² + 6(3x + 2y) + 9 ] + (x - 7)² + 6
= (3x + 2y + 3)² + (x - 7)² + 6.
Do (3x + 2y + 3)² ≥ 0; (x - 7)² ≥ 0 ⇒ (3x + 2y + 3)² + (x - 7)² ≥ 0.
⇒ 2A = (3x + 2y + 3)² + (x - 7)² + 6 ≥ 6
⇒ A ≥ 3. Dấu ''='' xảy ra ⇔ (x - 7)² = 0 và (3x + 2y + 3)² = 0
⇔ x - 7 = 0 và 3x + 2y + 3 = 0
⇔ x = 7 và 2y = -3x - 3 = -3.7 - 3 = -24
⇔ x = 7 và y = -12. Vậy GTNN của A = 3 đạt được ⇔ x = 7 và y = -12.
Nguồn: https://vn.answers.yahoo.com/
Ta có: \(\left[\left(\frac{1}{9}\right)^2+\left(2\right)^2\right]\left(9x^2+y^2\right)\ge\left(x+2y\right)^2=1\)
Suy ra \(9x^2+y^2\ge\frac{9}{19}\)
P/s: đúng ko ta? Dạo này hay tính nhầm lắm:(
tth_new
\(\left[\left(\frac{1}{3}\right)^2+2^2\right]\left(9x^2+y^2\right)\ge\left(x+2y\right)^2=1\)\(\Leftrightarrow\)\(9x^2+y^2\ge\frac{9}{37}\)
Dấu "=" xảy ra khi \(\frac{\frac{1}{9}}{x}=\frac{4}{2y}=\frac{\frac{1}{9}+4}{x+2y}=\frac{37}{9}\)\(\Rightarrow\)\(x=\frac{1}{37};y=\frac{18}{37}\)
\(\left(x-1\right)^2-25\)
\(=x^2-2x+1-25\)
\(=x^2-2x-24\)
\(=x^2-6x+4x-24\)
\(=x.\left(x-6\right)+4.\left(x-6\right)\)
\(=\left(x+4\right).\left(x-6\right)\)
a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)
b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
d, \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
Tham khảo nhé Nguyễn Thị Hồng Nhung
\(A=9x^2-6xy+2y^2+1\)
Đề thiếu gì ko vậy