K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

\(A=\left|3x+7\right|+\frac{13}{2}\left|3x+7\right|+6\)

Có: \(\left|3x+7\right|\ge0;\frac{13}{2}\left|3x+7\right|\ge0\)

\(\Rightarrow\left|3x+7\right|+\frac{13}{2}\left|3x+7\right|+6\ge6\)

Dấu '=' xảy ra khi: \(\left|3x+7\right|+\frac{13}{2}\left|3x+7\right|=0\)

\(\Leftrightarrow\left|3x+7\right|.\left(\frac{13}{2}+1\right)=0\)

\(\Leftrightarrow\left|3x+7\right|=0\Leftrightarrow3x+7=0\)

 \(\Leftrightarrow x=-\frac{7}{3}\)

Vậy: \(Min_A=6\) tại \(x=-\frac{7}{3}\)

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

14 tháng 7 2020

 rl8ph6gr59i5fe5ed7i90u68xw8pce5u

; ouunogrr

11 tháng 10 2021

\(A=\left|2x+1\right|+13\ge13\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

\(B=-\left(3x+5\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{3}\)

11 tháng 10 2021

a, Vì |2x+1|≥0 với mọi 

⇒A≥13

Dấu = xảy ra ⇔2x+1=0⇔x=\(\dfrac{-1}{2}\)

b, Vì (3x+5)2≥0 với mọi x

⇒B≤9

Dấu = xảy ra ⇔3x+5=1⇔x=\(\dfrac{-5}{3}\)

 

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

21 tháng 1 2017

a) Ý 1: Ta có:

/3x - 2017/ \(\ge\) 0 \(\forall\)x \(\in\) Z

=> /3x - 2017/ + 6 \(\ge\) 0 \(\forall\)x \(\in\) Z

=> A \(\ge\) 0 \(\forall\)x \(\in\) Z

Dấu "=" xảy ra khi /3x - 2017/ = 0

=> 3x - 2017 = 0

=> 3x = 2017

=> x = \(\frac{2017}{3}\)

Vậy GTNN của A = 6 khi x = \(\frac{2017}{3}\)

b) Lại có: -(4x - 3)2 \(\ge\) 0

=> 16 - (4x - 3)2 \(\ge\) 16 \(\forall\)x \(\in\) Z

=> D \(\ge\) 16 \(\forall\)x \(\in\) Z

Dấu "=" xảy ra khi (4x - 3)2 = 0

=> 4x - 3 = 0

=> 4x = 3 => x = \(\frac{3}{4}\)

Vậy GTLN của D = 16 khi x = \(\frac{3}{4}\).