Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left|7-2x\right|+7=2x\)
=>\(\left|2x-7\right|+7=2x\)
=>\(\left|2x-7\right|=2x-7\)
=>2x-7>=0
=>\(x>=\dfrac{7}{2}\)
b: \(\left|1-x\right|=4x+1\)
=>\(\left|x-1\right|=4x+1\)
=>\(\left\{{}\begin{matrix}4x+1>=0\\\left(4x+1\right)^2=\left(x-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1-x+1\right)\left(4x+1+x-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\5x\left(3x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
c: \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|3,2+\dfrac{2}{5}\right|\)
=>\(\left|x-\dfrac{1}{3}\right|=\dfrac{16}{5}+\dfrac{2}{5}-\dfrac{4}{5}=\dfrac{14}{5}\)
=>\(\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{14}{5}\\x-\dfrac{1}{3}=-\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{42+5}{15}=\dfrac{47}{15}\\x=-\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{-42+5}{15}=-\dfrac{37}{15}\end{matrix}\right.\)
d: \(\left|x-7\right|+2x+5=6\)
=>\(\left|x-7\right|=6-2x-5=-2x+1\)
=>\(\left\{{}\begin{matrix}-2x+1>=0\\\left(-2x+1\right)^2=\left(x-7\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1+x-7\right)\left(2x-1-x+7\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(3x-8\right)\left(x+6\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{8}{3}\left(loại\right)\\x=-6\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)
e: 3x-|2x-1|=2
=>|2x-1|=3x-2
=>\(\left\{{}\begin{matrix}3x-2>=0\\\left(3x-2\right)^2=\left(2x-1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2\right)^2-\left(2x-1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2-2x+1\right)\left(3x-2+2x-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-1\right)\left(5x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{3}{5}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(B=\frac{40-3x}{13-x}=\frac{39+1-3x}{13-x}=\frac{3\left(13-x\right)+1}{13-x}=3+\frac{1}{13-x}\)
Để B nguyên thì \(13-x\) là ước của 1.
\(\Rightarrow\begin{cases}13-x=1\\13-x=-1\end{cases}\Rightarrow\begin{cases}x=12\\x=14\end{cases}\)
b) Để B đạt GTLN thì \(\frac{1}{\left(13-x\right)}\) đạt giá trị dương lớn nhất.
\(\Rightarrow13-x\) đạt giá trị dương nhỏ nhất
\(\Rightarrow13-x=1\Rightarrow x=12\)
Để B đạt GTNN thì \(\frac{1}{\left(13-x\right)}\) đạt giá trị âm nhỏ nhất
\(\Rightarrow13-x\) đạt giá trị âm lớn nhất
\(\Rightarrow13-x=-1\)
\(\Rightarrow x=14\)
\(\frac{40-3x}{13-x}=\frac{1+39-3x}{13-x}=\frac{39-3x}{13-x}+\frac{1}{13-x}=\frac{3.\left(13-x\right)}{13-x}+\frac{1}{13-x}=3+\frac{1}{13-x}\)
Để \(\frac{40-3x}{13-x}\)lớn nhất thì \(\frac{1}{13-x}\)phải lớn nhất, khi đó 13-x phải nhỏ nhất và \(13-x\ge0\)
\(\Rightarrow13-x=1\Rightarrow x=12\)
\(\frac{40-3x}{13-x}=\frac{40-3.12}{13-12}=\frac{40-36}{1}=4\)
Vậy GTLN của \(\frac{40-3x}{13-x}\)là 4 khi x=12
\(D=\dfrac{-x+12+8}{x-12}=-1+\dfrac{8}{x-12}\)
Để D nhỏ nhất thì x-12=-1
=>x=11
\(C=\dfrac{3x-40}{x-13}=\dfrac{3x-39-1}{x-13}=3-\dfrac{1}{x-13}\)
Để C lớn nhât thì 1/x-13 nhỏ nhất
=>x-13=-1
=>x=12