K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12

  -|2,68 - 2\(x\)| - 5,9

Vì |2,68 - 2\(x\)| ≥ 0 ⇒ -|2,68 - 2\(x\)| ≤ 0 ⇒ - |2,68 - 2\(x\)| - 5,9 ≤ -5,9

Dấu bằng xảy ra khi:

2,68 - 2\(x\)  = 0 ⇒ 2\(x\) = 2,68 ⇒ \(x\) = 2,68 : 2 ⇒ \(x=1,34\)

Vậy giá trị lớn nhất của biểu thức:

- |2,68 - 2\(x\)| - 5,9 là -5,9 xảy ra khi \(x=1,34\)

Ta có: \(\left|2,68-2x\right|\ge0\)

\(\Rightarrow-\left|2,68-2x\right|\le0\)

\(\Rightarrow-\left|2,68-2x\right|-5,9\le0-5,9\)

\(\Rightarrow B\le-5,9\)

GTLN của B là -5,9

Dấu "=" xảy ra khi: \(2,68-2x=-5,9\)

                            \(\Rightarrow2x=2,68-\left(-5,9\right)\)

                             \(\Rightarrow2x=8,58\)

                            \(\Rightarrow x=4,29\)

25 tháng 10 2020

Tìm GTLN?

Ta có: 

\(A=-\left|2,68-2x\right|-5,9\)

Mà \(-\left|2,68-2x\right|\le0\left(\forall x\right)\)

\(\Rightarrow A=-\left|2,68-2x\right|-5,9\le-5,9\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left|2,68-2x\right|=0\)

\(\Rightarrow x=1,34\)

Vậy Max(A) = -5,9 khi x = 1,34

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

13 tháng 10 2021

\(A=\dfrac{1}{x^2+2}\)

Ta có \(x^2+2\ge2\Leftrightarrow\dfrac{1}{x^2+2}\le\dfrac{1}{2}\)

Vậy \(A_{max}=\dfrac{1}{2}\Leftrightarrow x=0\)

\(B=-\left|x+2015\right|+4\le4\\ B_{max}=4\Leftrightarrow x+2015=0\Leftrightarrow x=-2015\)

13 tháng 10 2021

J siêng dzậy :)

6 tháng 8 2018

\(B=\left|2x+3\right|-\left|2x-4\right|\le\left|2x+3-2x+4\right|=\left|7\right|=7\)

Dấu "=" xảy ra khi \(\left(2x+3\right)\left(2x-4\right)\ge0\)

TH1: \(\hept{\begin{cases}2x+3\ge0\\2x-4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge2\end{cases}\Rightarrow x\ge2}\)

TH2: \(\hept{\begin{cases}2x+3\le0\\2x-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le\frac{-3}{2}\\x\le2\end{cases}\Rightarrow}x\le\frac{-3}{2}}\)

Vậy Bmax = 7 khi x >= 2 hoặc x <= -3/2

20 tháng 6 2015

- |2x - 1| - |1 - 2x|=-(|2x-1|+|1-2x|)

ta có 

I 2x - 1I + I 1 - 2xI > = I 2x - 1 + 1 - 2xI  0 

=> - (I 2x- 1I + I1 - 2xI )  0 

dấu = xảy ra khi:

2x-1=0

2x=1

x=1/2

vây  GTLN của:   - |2x - 1| - |1 - 2x| là 0 tại x=1/2

20 tháng 6 2015

bài thắng trần đúng đó mình lộn