K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2020

\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)

\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)

\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)

Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)

\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)

\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)

                      \(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)

               \(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)

                                                                                                              \(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)

Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\)  hoặc x=-15; y=-6

Có 1 vài chỗ ko ok cho lắm bạn thông cảm

Học tốt

23 tháng 1 2020

Trả lời : 

Bn tham khảo link này :  

https://olm.vn/hoi-dap/detail/216085412740.html 

( Vào thống kê hỏi đáp của mk sẽ thấy ) 

Khó ghê !!!

Mik xin lỗi !!! Mik ko làm được nhé !!!

11 tháng 4 2022

GTLN là j vậy ạ

11 tháng 4 2022

Tham khảo

P=(4x2x2 +25y2y2 - 20xy) - (225y2y2 +36x2x2 - 180xy) - /xy-90/

  =4x2x2 +25y2y2 - 20xy - 225y2y2 - 36x2x2 + 180xy - /xy-90/

  =-32x2x2 + 160xy - 200y2y2 -/xy-90/

=-8(4x2x2 - 20xy + 25y2y2) -/xy-90/
= -8 (2x−5y)2(2x−5y)2 -/xy-90/

Ta thấy:(4x2x2 - 20xy + 25y2y2) /xy-90/≥≥ 0 và /xy-90//≥≥ 0

8 (2x−5y)2(2x−5y)2≤≤ 0 và -/xy-90//≤≤ 0

Do đó:- -8 (2x−5y)2
Hay: P/ 0

Vậy: GTLN của P là 0 đạt được khi {2x−5y=0xy−90=0 ⇒ [x=15⇒y=6x=−15⇒y=−6 

17 tháng 3 2019

ta có:

\(\left(3x-2y\right)^2\)>  0

\(\left(4y-6x\right)^2\)> 0

\(\left|xy-24\right|\)>    0

dấu "=" xảy ra (=)

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left(4y-6x\right)^2=0\\\left|xy-24\right|=0\end{cases}}\left(=\right)\hept{\begin{cases}3x-2y=0\\4y-6x=0\\xy-24=0\end{cases}}\)\(\)còn lại mk chưa tính ra

17 tháng 3 2019

bạn ơi nếu làm thế này là sai đó,các biến ở các hạnh tử giống nhau mà

20 tháng 1 2021

M = ( 3x - 2y )2 - ( 4y - 6x )2 - | xy - 24 |

= 9x2 - 12xy + 4y2 - ( 16y2 - 48xy + 36x2 ) - | xy - 24 |

= 9x2 - 12xy + 4y2 - 16y2 + 48xy - 36x2 - | xy - 24 |

= -27x2 + 36xy - 12y2 - | xy - 24 |

= -3( 9x2 - 12xy + 4y2 ) - | xy - 24 |

= -3( 3x - 2y )2 - | xy - 24 |

Ta có : \(\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\forall x,y\\-\left|xy-24\right|\le0\forall x,y\end{cases}}\Rightarrow-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x-2y=0\left(1\right)\\xy-24=0\left(2\right)\end{cases}}\)

Từ (1) => 3x = 2y => x = 2/3y

Thế x = 2/3y vào (2) ta được :

(2) <=> 2/3y2 = 24

<=> y2 = 36

<=> y = ±6

Với y = 6 => x = 4

Với y = -6 => x = -4

Vậy giá trị lớn nhất của M là 0, đạt được khi \(\hept{\begin{cases}x=4\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-4\\y=-6\end{cases}}\)

5 tháng 8 2017

a)\(-3x\left(y^2+2x\right)-3\left(1-xy^2\right)+6x^2\)

\(=-3xy^2-6x^2-3+3xy^2+6x^2\)

\(=-3\left(đpcm\right)\)

b)\(\left(2x+1\right)\left(3y-1\right)-\left(y-1\right)\left(6x+3\right)-2\left(2x+5\right)\)

\(=6xy-2x+3y-1-\left(6xy+3y-6x-3\right)-4x-10\)

\(=6xy-6x+3y-11-6xy-3y+6x+3\)

\(=-8\left(đpcm\right)\)

12 tháng 3 2020

\(H=\left(3x-2y\right)^2-\left(4y-6x\right)^2-\left|xy-24\right|\)

\(H=\left(3x-2y\right)^2-\left(-2\right)^2.\left(3x-2y\right)^2-\left|xy-24\right|\)

\(H=\left(3x-2y\right)^2-4\left(2x-2y\right)^2-\left|xy-24\right|\)

\(H=-3.\left(3x-2y\right)^2-\left|xy-24\right|\)

Vì \(\hept{\begin{cases}\left(3x-2y\right)^2\ge0\forall x,y\\\left|xy-24\right|\ge0\forall x,y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3\left(3x-2y\right)^2\le0\\-\left|xy-24\right|\le0\end{cases}}\)

\(\Leftrightarrow H=-3\left(3x-2y\right)^2-\left|xy-24\right|\le0\forall x,y\)

\(\Leftrightarrow H\le0\forall x,y\)

Dấu " = " xảy ra khi và chỉ 

\(\hept{\begin{cases}\left(3x-2y\right)^2=0\\\left|xy-24\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\xy=24\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2y}{3}\\\frac{2y}{3}.y=24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{2y}{3}\\y^2=36\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=6\Leftrightarrow x=4\\y=-6\Leftrightarrow x=-4\end{cases}}\)

Vậy \(Max_H=0\Leftrightarrow\left(x;y\right)\in\left\{\left(4;6\right);\left(-4;-6\right)\right\}\)

Bạn tham khảo !!!