K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2022

sai, parabol úp

5 tháng 7 2022

cái này đáng ra là tìm giá trị lớn nhất chứ không phải nhỏ nhất

p = 2 + x - x2

P = -x2 + x + 2

P = - ( x2 - 2. \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)) + \(\dfrac{9}{4}\)

P = - (x - \(\dfrac{1}{2}\))2 + \(\dfrac{9}{4}\)

- ( x - 1/2 ) 2 ≤ 0 ⇔ p ≤  \(\dfrac{9}{4}\)⇔ P(max) = 9/4 dấu = xảy ra khi x = 1/2

NV
26 tháng 12 2022

Cả 2 biểu thức này đều ko tồn tại GTNN

GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)

26 tháng 12 2022

viết thiếu, rời mới nhận ra

 

7 tháng 7 2017

bạn nói với mình điều kiện x>2 vậy làm như sau:

Đặt:\(A=\frac{3x-x^2-18}{x-2}=-\frac{x^2-3x+18}{x-2}=-\frac{x^2-4x+4+x-2+16}{x-2}\)

\(=-\frac{\left(x-2\right)^2+\left(x-2\right)+16}{x-2}\)\(=-\left(x-2+1+\frac{16}{x-2}\right)\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-2+\frac{16}{x-2}\ge2\sqrt{\left(x-2\right).\frac{16}{x-2}}=8\)

=>\(x-2+\frac{16}{x-2}+1\ge9\)=>\(A=-\left(x-2+1+\frac{16}{x-2}\right)\le-9\)

=> maxA=-9 <=> x=6

bạn kham khảo link :   https://olm.vn/hoi-dap/detail/88594630023.html

2 tháng 7 2019

Điều kiện x ≠ 2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x - 1 2 ≥ 0 nên x - 1 2 + 2 ≥ 2 với mọi giá trị của x.

Khi đó giá trị nhỏ nhất của biểu thức bằng 2 khi x = 1.

Vậy biểu thức đã cho có giá trị nhỏ nhất bằng 2 tại x = 1.

22 tháng 7 2023

\(...=A=x^3-3x^2+3x-1+1013\)

\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)

\(...B=x^3-6x^2+12x-8-100\)

\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)

\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)

\(...D=x^3+9x^2+27x+9+2018\)

\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)

22 tháng 7 2023

a) \(A=x^3-3x^2+3x+1012\)

\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)

\(A=\left(x-1\right)^3+1013\)

Thay x=11 vào A ta có:

\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)

b) \(B=x^3-6x^2+12x-108\)

\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)

\(B=\left(x-2\right)^3-100\)

Thay x=12 vào B ta có:

\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)

c) \(C=x^3+6x^2y+12xy^2+8y^3\)

\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)

\(C=\left(x+2y\right)^3\)

Thay x=-2y vào C ta được:

\(C=\left(-2y+2y\right)^3=0^3=0\)

d) \(D=x^3+9x^2+27x+2027\)

\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)

\(D=\left(x+3\right)^3+2000\)

Thay x=-23 vào D ta có:

\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)