K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

\(M=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Vậy GTNN của \(M=1\) khi \(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

22 tháng 11 2015

mình biết nè .nhưng đợi chút nhé

6 tháng 2 2020

giải ik mik k cho

7 tháng 2 2020

\(A=\left|x-13\right|+\left|x-14\right|+\left|x-15\right|+\left|x-16\right|+\left|x-17\right|-10\)

\(=\left(\left|x-13\right|+\left|x-16\right|\right)+\left(\left|x-14\right|+\left|x-17\right|\right)-10+\left|x-15\right|\)

\(=\left(\left|x-13\right|+\left|16-x\right|\right)+\left(\left|x-14\right|+\left|17-x\right|\right)-10+\left|x-15\right|\)

\(\Rightarrow A\ge\left|x-13+16-x\right|+\left|x-14+17-x\right|-10+\left|x-15\right|\)

               \(=\left|3\right|+\left|3\right|-10+\left|x-15\right|\)\(=3+3-10+\left|x-15\right|=-6+\left|x-15\right|\)

Vì \(\left|x-15\right|\ge0\forall x\)\(\Rightarrow A\ge-6\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-13\right)\left(16-x\right)\ge0\\\left(x-14\right)\left(17-x\right)\ge0\\x-15=0\end{cases}}\Leftrightarrow\hept{\begin{cases}13\le x\le16\\14\le x\le17\\x=15\end{cases}}\Leftrightarrow x=15\)

Vậy \(minA=-6\Leftrightarrow x=15\)

a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x

=> ( x-2)2 +2023 \(\ge\) 2023

Vậy ...

Dấu bằng xảy ra khi x-2 = 0

b. (x-3)2+(y-2)2-2018

Ta có: \((x-3)^2 \ge0,\forall x\)

           \((y-2) ^2 \ge0,\forall y\) 

=> ( x-3)2 + ( y-2)2 \(\ge\) 0

=>  ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y 

Vậy ...

Dấu bằng xảy ra khi x-3=0

                                 y-2=0

c. ( x+1)2 +100

Ta có : ( x+1)2 \(\ge0,\forall x\) 

=> ( x+1)2+100 \(\ge\) 100

Vậy ...

Dấu bằng xảy ra khi x+1=0

10 tháng 2 2019

Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình

7 tháng 12 2016

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html

\(\left(-3x\right)\cdot xy^2+\left(-2xy\right)^2=-3x^2y^2+4x^2y^2=x^2y^2>=0\forall x,y\)

24 tháng 9 2017

a, Vì \(\left|x-\frac{2}{3}\right|\ge0\Rightarrow2\left|x-\frac{2}{3}\right|\ge0\Rightarrow B=2\left|x-\frac{2}{3}\right|-1\ge-1\)

Dấu "=" xảy ra khi \(2\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy MinB = -1 khi \(x=\frac{2}{3}\)

b, Vì \(\left|3x+8,4\right|\ge0\Rightarrow D=\left|3x-8,4\right|-14,2\ge-14,2\)

Dấu "=" xảy ra khi |3x - 8,4| = 0 => x = 2,8

Vậy MinD = -14,2 khi x = 2,8

c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(F=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\ge\left|2002-x+x-2001\right|=1\)

Dấu "=" xảy ra khi \(\left(2002-x\right)\left(x-2001\right)\ge0\Leftrightarrow-2001\le x\le2002\)

Vậy MinF = 1 khi \(-2001\le x\le2002\)

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

Để A đạt GTNN thì 6​​/ /x/-3 đạt giá trị nhỏ nhất

để 6//x/-3 đạt GTNN thì /x/-3 là số nguyên âm lớn nhất có thể

\(\Rightarrow\)/x/-3=-1\(\Rightarrow\)/x/=2\(\Rightarrow\)x=+ - 2

\(\Rightarrow\)A min = 6/-1=-6

Vậy GTNN của A là -6 \(\Leftrightarrow\)x=+-2