K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2019

Chọn C

Ta có 

Khi đó 

Ta có 

Suy ra:  m i n   y [ 2 ; 4 ] = 6

9 tháng 4 2017

Chọn A

Cách 1: 

Ta có: 

Cách 2: Với x ∈ [2;4] nên theo bất đẳng thức Cô – si ta có 

Dấu “ = ” xảy ra khi 

15 tháng 7 2018

TXĐ: D = R\{0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (− ∞ ;3), (3;+ ∞ )

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: [2;4] ⊂ (0; + ∞ ); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5

8 tháng 3 2018

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

15 tháng 7 2017

Chọn đáp án B

Có m a x [ - 2 ; 4 ] f x = f - 2 = 7

  m i n [ - 2 ; 4 ] f x = f 4 = - 4

Tổng giá trị lớn nhất và giá trị nhỏ nhất bằng 3

19 tháng 11 2019

Chọn D.

Xét hàm số hàm số liên tục trên R

Có 

đồng biến trên [2;4]

Nên 

Do đó 

Ta có 

Dấu bằng xảy ra 

Vậy