Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)
^.^
Ta có f(1999) = 19992015 - 2000.19992004 + 2000.19992013 - 2000.19992012 + .... + 2000.1999 - 1
= 19992015 - 2000(19992014 - 19992013 + 19992012 - .... - 2000.1999) - 1
Đặt C = 19992014 - 19992013 + 19992012 - .... - 2000.1999
Khi đó : f(1999) = 19992015 - 2000C - 1
Ta có : C = 19992014 - 19992013 + 19992012 - .... - 2000.1999
=> 1999C = 19992015 - 19992014 + 19992013 - .... - 2000.19992
Lấy 1999C cộng C theo vế ta có :
1999C + C = (19992015 - 19992014 + 19992013 - .... - 2000.19992) + (19992014 - 19992013 + 19992012 - .... - 2000.1999)
2000C = 19992015 - 2000.1999
=> f(1999) = 19992015 - 19992015 + 2000.1999 - 1 = 2000.1999 + 1
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.
Vì \(\left(\left|x-3\right|+2\right)^2\ge0\left(\forall x\in Z\right)\)
\(\left|y+3\right|\ge3\left(\forall y\in Z\right)\)
\(\Rightarrow P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge2007\)
Dấu "=" xảy ra khi \(\left(\left|x-3\right|+2\right)^2=0\Rightarrow\left|x-3\right|+2=0\Rightarrow\left|x-3\right|=-2\)
\(\Rightarrow x\in\varnothing\) (Vì giá trị của GTTĐ không thể là một số âm)
\(\left|y+3\right|=0\Rightarrow y+3=0\Rightarrow y=-3\)
Vậy \(P_{min}=2007\Leftrightarrow y=-3;x\in\varnothing\)