Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2+3x-1=x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)
\(B_{min}=\dfrac{-13}{4}\Leftrightarrow x=\dfrac{-3}{2}\)
\(B=2\left(x^2+4x+4\right)+1=2\left(x+2\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=-2\)
\(C=4x^2y^2+12xy+9+6=\left(2xy+3\right)^2+6\ge6\)
\(C_{min}=6\) khi \(xy=-\dfrac{3}{2}\)
Ta có: \(B=2x^2+8x+9\)
\(=2\left(x^2+4x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{1}{2}\right)\)
\(=2\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
Vậy: \(B_{min}=1\) khi x=-2
B=\(2x^2-4xy-2x+4y^2+2013\)
\(=x^2-4xy+4y^2+x^2-2x+1+2012\)
\(=\left(x-2y\right)^2+\left(x-1\right)^2+2012\ge2012\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
\(\left(x-2y\right)^2=0\Leftrightarrow2y=1\Leftrightarrow y=\dfrac{1}{2}\)
Vậy \(Min_B=2012\) khi x=1 , y=\(\dfrac{1}{2}\)
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Ta thấy \(5x^2\ge0\forall x\)
\(\Rightarrow5x^2+5\ge5\)
\(\Rightarrow B\ge5\)
Dấu "=" xảy ra khi \(x=0\)
...
\(B=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
GTNN của B là 5 khi x = 0
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(a,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow\dfrac{-x^4+2x^2-3x+5}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^4+x^3-x^3+x^2+x^2-x-2x+2+3}{x-1}\in Z\\ \Leftrightarrow\dfrac{-x^3\left(x-1\right)-x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)+3}{x-1}\in Z\\ \Leftrightarrow-x^3-x^2+x-2+\dfrac{3}{x-1}\in Z\\ \Leftrightarrow3⋮x-1\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\\ Mà.x< 0\\ \Leftrightarrow x=-2\\ b,B=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y\right)^2+4\left(x-y\right)+4+4y^2-2024\\ B=\left(x-y-2\right)^2+4y^2-2024\ge-2024\\ B_{min}=-2024\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)
\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)
\(=x^2\left(x-1\right)^2+\left(x-1\right)^2\)
\(=\left(x^2+1\right)\left(x-1\right)^2\)
\(\left(x-1\right)^2>=0\forall x\)
\(x^2+1>=1\forall x\)
Do đó: \(\left(x-1\right)^2\cdot\left(x^2+1\right)>=0\forall x\)
Dấu = xảy ra khi x=1
\(B=\left(x-1\right)^2-4\ge4\\ B_{min}=4\Leftrightarrow x=1\)
\(B=x^2-2x-3=\left(x^2-2x+1\right)-4\)
\(=\left(x-1\right)^2-4\ge-4\)
\(minB=-4\Leftrightarrow x=1\)