Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B = | 2x - 3 | - 7
| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7
Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2
=> MinB = -7 <=> x = 3/2
C = | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 3 - x ) ≥ 0
=> 1 ≤ x ≤ 3
=> MinC = 2 <=> 1 ≤ x ≤ 3
b) M = 5 - | x - 1 |
- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxM = 5 <=> x = 1
N = 7 - | 2x - 1 |
- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
=> MaxN = 7 <=> x = 1/2
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
a) Để A= I 2x-3 I + 1/2 bé nhất thì I 2x-3 I phải bé nhất, mà I 2x-3 I bé hơn hoặc = 0=> I2x-3 I =0 => 2x=3=> x=3/2
Vậy giá trị nhỏ nhất của A là 1/2 tại x= 3/2
b) Để B nhỏ nhất thì | 5x + 6 | phải nhỏ nhất, mà | 5x + 6 | bé hơn hoặc = 0=> | 5x + 6 |=0 => x= -6/5
Vậy giá trị nhỏ nhất của B là -0.25 tại x=-6/5
c) Để C nhỏ nhất thì Ix-3I hoặc I x+7I phải nhỏ nhất, mà I x-3 I và Ix-7I bé hơn hoặc = 0 => x-3 = 0 hoặc x+7 = 0
=> x=3 hoặc x= -7
Thay x=3 vào C, có: | 3- 3 | + | 3 + 7 | = 0+ 10 = 10
Thay x=7 vào C, có: | -7 - 3 | + | -7 + 7 | = 10+0 = 10
=> giá trị nhỏ nhất của C là 10 tại x=3 hoặc x=7
\(G=\left|7-x\right|+\left|2x-1\right|+\left|x+5\right|\)
\(\Rightarrow G=\left|7-x\right|+\left|2x-1\right|+\left|-x-5\right|\)
\(\Rightarrow G=\left|7-x\right|+\left|2x-1\right|+\left|-x-5\right|\ge\left|7-x+2x-1-x-5\right|\)
\(\Rightarrow G\ge\left|1\right|=1\)
Còn phần tìm Gt của x tự làm
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(|2x-9|+|x-7|+|x-3|=|2x-9|+(|x-7|+|3-x|)\)
\(\geq |2x-9|+|x-7+3-x|=|2x-9|+4\geq 4\)
Vậy GTNN của biểu thức là $4$ khi \(\left\{\begin{matrix} (x-7)(3-x)\geq 0\\ 2x-9=0\end{matrix}\right.\Leftrightarrow x=\frac{9}{2}\)
em chưa hiểu chỗ |2x−9|+4≥4 cô ạ