Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trăm năm trong cõi người ta
ai ai cũng phải thở ra hít vào
trăm năm bất kể người nào
ai ai cũng phải hít vào thở ra
rất xa như nước cu-ba
người ta còn phải thở ra hít vào
rất gần ngay như nước lào
người ta cũng phải hít vào thở ra
vậy nên trong cõi người ta
không ai không phải thở ra hít vào
vậy nên bất kể người nào
không ai không phải hit vào thở ra...
các bạn thấy có hay ko, vs nha
C=(a^2016+2015)/(a^2016+1)=(a^2016+1+2015)/(a^2016+2015)=1+(2015/a^2016+1)
Max C<=> Max 2015/a^2016+1 <=>Min a^2016+1; mà a^2016_> 0 => a^2016+1_> 1 vậy Min a^2016+1=1=> max C=2017<=>x=0
\(\left|x-2016\right|-\left|2015-x\right|\)
\(\left|2016-x\right|-\left|2015-x\right|\)
\(\ge\left|2016-x-2015+x\right|=1\)
Dấu "=" \(\Leftrightarrow\left(2016-x\right)\left(2015-x\right)\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le2016\\x\le2015\end{matrix}\right.\)
\(B=2016-\sqrt{x+2015}\)
Để cho B có nghĩa thì biểu thức trong căn phải lớn hơn = 0
\(\Rightarrow x+2015\ge0\Rightarrow x\ge-2015\)
Ta có
\(\sqrt{x+2015}\ge0\)
\(\Rightarrow-\sqrt{x+2015}\le0\)
\(\Rightarrow2016-\sqrt{x+2015}\le2016\)
Vậy GTLN của B là 2016 đạt được khi x = - 2015
Ta có:
\(S=\frac{x^2+2016}{x^2+2015}=\frac{x^2+2015+1}{x^2+2015}=1+\frac{1}{x^2+2015}\)
Để S mang GTLN thì \(\frac{1}{x^2+2015}\)phải lớn nhất
\(\Rightarrow x^2+2015\)nhỏ nhất.\(\left(1\right)\)
Mà \(x^2\ge0\)với mọi x
\(\Rightarrow x^2+2015\ge2015\)với mọi x\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\Rightarrow\)\(x^2=2015\)
Khi đó, \(S=1+\frac{1}{2015+2015}=1+\frac{1}{4030}=1\frac{1}{4030}\)
Vậy GTLN của \(S=1\frac{1}{4030}\)