K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

               Gọi d là ước chung nguyên tố của 2n + 1 và n + 2

          Ta có : 2n + 1 và n + 2 chia hết cho d

                  => 2n + 1 và 2n + 4 chia hết cho d

                  =>(2n + 4) - (2n + 1) chia hết cho d

                  =>       3 chia hết cho d   => d = 3

          Để p/s tối giản thì d ko bằng 3

                  => 2n + 1 ko chia hết cho 3

                  => 2n + 1 - 3 ko chia hết cho 3

                  =>  2n - 2 ko chia hết cho 3

                  => 2.(n - 1) ko chia hết cho 3

                  =>    n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)

                  => n ko bằng 3k + 1(k thuộc Z)

          Vậy với n ko bằng 3k + 1 thì p/s tối giản

              

13 tháng 4 2023

  Gọi d là ước chung nguyên tố của 2n + 1 và n + 2

          Ta có : 2n + 1 và n + 2 chia hết cho d

                  => 2n + 1 và 2n + 4 chia hết cho d

                  =>(2n + 4) - (2n + 1) chia hết cho d

                  =>       3 chia hết cho d   => d = 3

          Để p/s tối giản thì d ko bằng 3

                  => 2n + 1 ko chia hết cho 3

                  => 2n + 1 - 3 ko chia hết cho 3

                  =>  2n - 2 ko chia hết cho 3

                  => 2.(n - 1) ko chia hết cho 3

                  =>    n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)

                  => n ko bằng 3k + 1(k thuộc Z)

          Vậy với n ko bằng 3k + 1 thì p/s tối giản

23 tháng 6 2018

Ta có: (2n+1) chia hết cho (n+2)

=>2(n+2)-3 chia hết cho n+2

=>-3 chia hết cho n+2

=> n+2 thuộc Ư(-3)

ta có bảng sau:

n+23-31-1
n1-5-1-3

vậy n thuộc tập hợp {1; -3; -1; -5} thì n rút gọn được

8 tháng 3 2018

mk bt làm ƯCLN của 2n+1 và n+2\(\in\)(1,3 rồi các bạn chỉ cần trình bày đoạn sau thui

18 tháng 2 2023

để 2n+15/n+2 rút gọn được thì 2n+15 chia hết cho n+2
                                              => 2n+4+11 chia hết n+2
       Vì 2n+4 chia hết cho n+2 => 11 chia hết n+2
   => n+2 thuộc ước của 11 
 => n+2 thuộc 1;-1;11;-11
=> n thuộc -1;-3;9;-13

 

18 tháng 6 2020

1) Đặt: ( n + 9 ;  n - 6 ) = d  với d là số tự nhiên 

=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)

=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }

=> d có thể rút gọn cho số 3; 5; 15 

18 tháng 6 2020

2) Đặt: ( 18n + 3 ; 23n + 7 ) = d 

=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)

=> \(57⋮d\)

=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)

=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được  khi d = 3; d = 19 ; d = 57 

Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19 

Nên mình chỉ cần xác định n với d = 3 và d =19 

+) Với d = 3 

\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)

=> \(n+11⋮3\)

=> \(n-1⋮3\)

=>Tồn tại số tự nhiên k sao cho:  \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3

+) Với d = 19

\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)

=> \(n+11⋮19\Rightarrow n-8⋮19\)

=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19

Vậy n = 3k + 1 hoặc  n = 19k + 8 thì phân số sẽ rút gọn được.

25 tháng 7 2016

\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z

 <=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6

                                   n-1 = -5 => n=-4

                                   n-1 = 1 => n= 2

                                   n -1 = -1 => n = 0 

B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3 

23 tháng 2 2017

Mình làm phần 1. Phần 2 bạn dựa vào đó mà làm.

Để \(\frac{12}{7n+1}\) rút gọn được thì 7n + 1 phải chia hết cho 1 ước số lớn hơn 1 của 12

Ư(12) = { 2 ; 3 ; 4 ; 6 ; 12 }

Để 7n + 1 chia hết cho 2 thì n lẻ;

Để 7n+ 1chia hết cho 4 thì 7n chia 4 dư 3; mà 7 chia 4 dư 3 nên n chia 4 dư 1 

Để  7n+1 chia hết cho 3 thì 7n chia 3 dư 2; mà 7 chia 3 dư 1 nên n chia 3 dư 2

Để 7n+1 chia hết cho 6 thì 7n chia 6 dư 5; mà 7 chia 6 dư 1 nên n chia 6 dư 5

Để 7n+1 chia hết cho 12; thì n phải chia hết cho 4 và 3; tức n chia 4 dư 1; chia 3 dư 2; hay chia 12 dư 5 .

Vậy ...