Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h)
ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)
k)
ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)
m)
ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)
Lời giải:
a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$
b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)
c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$
d) ĐK:
\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)
e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$
f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)
a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)
c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)
d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)
a) ĐK: \(\left\{{}\begin{matrix}x\ne-1\\\frac{4-x}{x+1}\ge0\end{matrix}\right.\). Lập bảng xét dấu sẽ được \(-1< x\le4\)
b) Tương tự
c)(em ko chắc) ĐK: \(\left\{{}\begin{matrix}x^2-4\ge0\left(1\right)\\\frac{x-2}{x+1}\ge0\left(2\right)\\x\ne-1\end{matrix}\right.\). Giải (1) ta được \(x\le-2\text{hoặc }x\ge2\)
Giải (2) được \(x\le-1\text{ hoặc }x\ge2\)
Kết hợp lại ta được: \(x\le-2\text{hoặc }x\ge2\)
a) ĐK: $x\geq 0$
\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)
\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)
Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)
b) Không đủ căn cứ để tìm min- max
c)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)
\(=|2x-1|+|2x-3|\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)
Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$
$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$
d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)
e)
\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)
\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)
Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$
f) ĐK: $x\geq 4$
\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)
Với mọi $x\geq 4$ thì:
\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)
\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)
$\Rightarrow E\leq 3$
Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)
\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)
\(\Rightarrow3x+2=2\left(x+2\right)\)
\(\Rightarrow3x+2=2x+4\)
\(\Rightarrow3x-2x=4-2\)
\(\Rightarrow x=2\)
\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)
\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)
\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)
\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)
\(\Rightarrow2\sqrt{x-2}=4\)
\(\Rightarrow\sqrt{x-2}=2\)
\(\Rightarrow x-2=4\)
\(\Rightarrow x=6\)
\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)
\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)
\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)
\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)
\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)
\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)
\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)
\(\Rightarrow2x^2+7x=0\)
\(\Rightarrow x\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)
\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)
\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)
\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)
\(\Rightarrow x=1\)
Lời giải:
a)
\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)
b)
\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)
\(\Leftrightarrow 1\leq x\leq 5\)
c)
\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)
d)
\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)
e) \(x\in\mathbb{R}\)
f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)
Do đó không tồn tại $x$ để hàm số tồn tại
g)
\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow 1< x\leq 6\)
\(a,\sqrt{1-3x}\)
\(< =>1-3x\ge0\)
\(3x\le1\)
\(x\le\frac{1}{3}\)
\(b,-3< 0\)
\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)
\(x< \frac{5}{2}\)
\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)
\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)
\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)
\(d,\frac{x-5}{\sqrt{-4x}}\)
\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)
\(-4x>0\)
\(x< 0\)
\(e,\sqrt{x-2}+\frac{1}{x-3}\)
\(\sqrt{x-2}\ge0;x-3\ne0\)
\(x\ge2;x\ne3\)
\(f,\sqrt{-\left(x-2\right)^2}\)
\(\sqrt{-\left(x-2\right)^2}\ge0\)
\(-\left|x-2\right|\ge0\)
\(-\left|x-2\right|\le0\)
lên chỉ có 1 nghiệm duy nhất là
\(x-2=0< =>x=2\)
\(g,\sqrt{\frac{-2x^2}{3x+2}}\)
\(-2x^2\le0\)
\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)
\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)
a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)
\(\Leftrightarrow1-3x\ge0\)
\(\Leftrightarrow-3x\ge-1\)
\(\Leftrightarrow x\ge\frac{1}{3}\)
b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)
\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)
\(\Leftrightarrow2x-5>0\)
\(\Leftrightarrow2x>5\)
\(\Leftrightarrow x>\frac{5}{2}\)
c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)
\(\Leftrightarrow3x+2-2x+3\ge0\)
\(\Leftrightarrow x+5\ge0\)
\(\Leftrightarrow x\ge-5\)
d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)
\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)
\(\Leftrightarrow-2x>0\)
\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)
f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)
\(\Leftrightarrow-x^2+4x-4\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge0\)
không có z thỏa mãn
g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)
\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)
\(\Leftrightarrow3x+2>0\)
\(\Leftrightarrow3x>-2\)
\(\Leftrightarrow x>\frac{-2}{3}\)
@Cừu