Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để giá trị của biểu thức \(\frac{x}{x^2-4}+\sqrt{x-2}\)xác định được thì
\(\left\{{}\begin{matrix}x^2-4\ne0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\notin\left\{2;-2\right\}\\x\ge2\end{matrix}\right.\Leftrightarrow x>2\)
b) Để giá trị của biểu thức \(\frac{\sqrt{x}}{\left|x\right|-1}\) xác định được thì
\(\left\{{}\begin{matrix}x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left|x\right|\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\notin\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow0\le x\ne1\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
h)
ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)
k)
ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)
m)
ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)
Lời giải:
a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$
b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)
c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$
d) ĐK:
\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)
e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$
f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)
Lời giải:
a) Ta thấy $2x^2+3>0$ với mọi $x\in\mathbb{R}$ nên $\frac{-4}{2x^2+3}< 0$ với mọi $x\in\mathbb{R}$
Do đó biểu thức không có nghĩa với mọi $x\in\mathbb{R}$, hay không tồn tại giá trị $x$ để bt có nghĩa
b)
ĐK: \(\left\{\begin{matrix} x^2+2\neq 0\\ -\frac{1-x}{x^2+2}\geq 0\end{matrix}\right.\Leftrightarrow -(1-x)\geq 0\Leftrightarrow 1-x\leq 0\Leftrightarrow x\geq 1\)
c) ĐK: $-x^2+2x+1\geq 0$
$\Leftrightarrow x^2-2x-1\leq 0$
$\Leftrightarrow (x-1)^2\leq 2\Leftrightarrow -\sqrt{2}\leq x-1\leq \sqrt{2}$
$\Leftrightarrow 1-\sqrt{2}\leq x\leq 1+\sqrt{2}$
d)
ĐK: $4-|x|\geq 0\Leftrightarrow |x|\leq 4\Leftrightarrow -4\leq x\leq 4$
e)
ĐK: $x^2-16>0\Leftrightarrow (x-4)(x+4)>0\Leftrightarrow x>4$ hoặc $x< -4$