Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Bui Cam Lan Bui - Toán lớp 8 - Học toán với OnlineMath
f(x) = ax2 + bx + c
f(x - 1) = a(x - 1)2 + b(x - 1) + c = a(x2 - 2x + 1) + bx - b + c = ax2 - 2ax + a + bx - b + c
f(x) - f(x - 1) = (ax2 + bx + c) - (ax2 - 2ax + a + bx - b + c) = ax2 + bx + c - ax2 + 2ax - a - bx + b - c = 2ax - a + b
mà f(x) - f(x - 1) = 2x - 1
=> 2ax - a + b = 2x - 1
<=> 2ax - a + b - 2x + 1 = 0
<=> 2x(a - 1) - (a - 1) + b = 0
<=> (a - 1)(2x - 1) + b = 0
<=> a - 1 = 0 và b = 0
<=> a = 1 và b = 0
Chọn c tuỳ ý.
Chọn c = 0 => f(x) = x2
Đặt f(n) = n2
1 = f(1) - f(0)
3 = f(2) - f(1)
5 = f(3) - f(2)
. . .
2n - 1 = f(n) - f(n - 1)
S = 1 + 3 + 5 + . . . (2n - 1) = f(1) - f(0) + f(2) - f(1) + f(3) - f(2) + . . . + f(n) - f(n -1) = f(n) - f(0) = n2
Vậy S = 1 + 3 + 5 + . . . (2n - 1) = n2
1) Gọi \(f\left(x\right)=3x^3+bx^2+cx+d\)
Ta có: \(f\left(1\right)=3+b+c+d=-1\Rightarrow b+c+d=-4\left(1\right)\)
Lại có: \(f\left(2\right)=24+4b+2c+d=2\Rightarrow4b+2c+d=-22\left(2\right)\)
Từ (1); (2) \(\Rightarrow3b+c=-18\)
Mặt khác: \(f\left(10\right)-f\left(-7\right)=3.1000+100b+10c+d+343-49b+7c-d\)
\(=3343+17.\left(3b+c\right)=3343-17.18=3037\)
Câu 2 tương tự
Giả sử đa thức thương có dạng là ax + b. Khi đó: f(x) = (x2+1)(ax+b) + 5x+4
Bạn lần lượt thay x = 1 và x = -1 vào đa thức trên thì ra hệ pt vs 2 ẩn a, b. cộng tương ứng từng vế của 2 hệ đó lại là tìm được a, b. thay a, b vào đa thức trên, khai triển ra rồi thay x = 2014 là ok
f(x) là đa thức bậc hai nên đặt f(x) = ax2 + bx + c
=> f(x - 1) = a(x - 1)2 + b(x - 1) + c
=> f(x) - f(x - 1) = a.[x2 - (x - 1)2] + b[x - (x - 1)] = a.(2x - 1) + b = 2ax + (b - a)
Để f(x) - f(x - 1) = x thì 2ax + (b - a) = x <=> 2a = 1 và b - a = 0 => a = b = 1/2. Chọn c tùy ý
Chọn c = 0 , Vậy đa thức f(x) = \(\frac{x^2+x}{2}=\frac{x\left(x+1\right)}{2}\)
Áp dụng tính S: Đặt f(n) = \(\frac{n\left(n+1\right)}{2}\) ta có:
1 = f(1) - f(0); 2= f(2) - f(1); ...; n = f(n) - f(n - 1)
=> S = 1 + 2 + ...+ n = f(1) - f(0) + f(2) - f(1) + ...+ f(n) - f(n - 1) = [f(1) + f(2) + ....+ f(n)] - [f(0) + f(1) + ...+ f(n-1)]
S = f(n) - f(0) = \(\frac{n\left(n+1\right)}{2}\)
Vậy.............
xét f(x)=ax^2 cộg bx cộg c
f(x)-f(x-1)=x
<=>2ax-(a-b)=x
vì phân tích trên là duy nhất suy ra a=b=1/2
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số)
cho x=0,1,2,...n rồi cộng lại ta đc:
f(n)-f(0)=1 cộng 2 cộng...cộg n
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n.
lưu ý:từ bài này ta có thể suy ra cách tính tổng của một số dãy số.