Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) S = -(a-b-c)+(-c+b+a)-(a+b)
S=-a+b+c-c+b+a-a-b
S=(a-a)+(b-b)+(c-c)+b+a
S=0+0+0+b+a
S=b+a
2) GIẢI
a) Ta có: 4 chia hết cho n-2:
=>n-2 E Ư(4) = {+-1;+-2;+-4}
Xét 3 trường hợp
Trường hợp 1:
n-2=1
n=3
Trường hợp 2:
n-2=2
n=4
Trường hợp3
n-2=4
n=6
Với trường hợp số âm bạn làm tương tự
b) GIẢI
Ta có 3n-7 chia hết cho n-2
=>3(n-2)-5 chia hết cho n-2
Từ trên ta có được 3(n-2)chia hết cho n-2
=>5chia hết cho n-2
=> n-2 E Ư(5) = {+-1;+-5}
Xét 2 trường hợp:
Trường hợp 1
n-2=1
n=3
trường hợp 2:
n-2=5
n=7
với trường hợp số âm bạn làm tương tự
a/ 145xy chia hết cho 5 => y=0 hoặc y=5
Mà 145xy chia cho 3 dư 2 => 145xy+1 sẽ chia hết cho 3
+/ TH1: y=0 => 145xy+1 = 145x1
Để chia hết cho 3 => 1+4+5+x+1=11x\(⋮\)3 <=> x=1;4;7
=> Số cần tìm là: 14510, 14540, 14570
+/ TH2: y=5 => 145xy+1 = 145x6
Để chia hết cho 3 => 1+4+5+x+6=16x\(⋮\)3 <=> x=2;5;8
=> Số cần tìm là: 14525, 14555, 14585
Đáp số: Có 6 số thỏa mãn: 14510, 14540, 14570; 14525, 14555, 14585
b/ 10xy5 Nhận thấy số này luôn chia hết cho 5
Để chia hết cho 9 => 1+0+x+y+5=6+(x+y)\(⋮\)9 (x+y<19)
=> x+y=(3,12) => Các cặp x, y thỏa mãn là: (x,y)=(0,3), (3,0); (1,2); (2; 1); (3,9); (9,3); (4,8); (8,4); (7,5); (5,7); (6,6)
=> Các số cần tìm là: 10035; 10305; 10125; 10215; 10395; 10935; 10485; 10845; 10755; 10575; 10665
1
ta có 72=9,8 và UCLN(8,9)=1
SUY RA x269y chia hết 8 suy ra 69y cia hết cho 8 nên y = 6
nếu y=6 ta có x2696 chia hết cho 9 suy ra x+23 chia hết cho 9 mà 0<x<9 nên x=4
vậy x=4 và y=6
2
a, do 10 là số chăn nên nâng mũ mấy lên cũng là số chẵn suy 10 ^2002 chia hết co 2
ta có 2^2002 =100...00 suy 1 ko chia hết cho 3 nên 10^2002 ko chia hết cho 3
b, ta có 10^2017 +1=100..00 +1 suy ra 2 ko chia hết cho 9
mấy bài còn lại cux dễ tự làm đi nha lê
a, Vì : \(963⋮9,2493⋮9,351⋮9\)
Để : \(A⋮9\Rightarrow x⋮9\Rightarrow x=9k\left(k\in N\right)\)
Vậy : \(x=9k\left(k\in N\right)\) thì \(A⋮9\)
Vì : \(963⋮9,2493⋮9,351⋮9\)
Để : \(A⋮̸\) 9 \(\Rightarrow x⋮̸\) 9\(\Rightarrow x=9k+r\) ( k\(\in\) N , r \(\in\) N* , 0 < r < 9 )
Vậy : \(x=9k+r\) ( k \(\in\) N , r \(\in\) N* , 0 < r < 9 ) thì \(A⋮̸\) 9
Ta có : \(963⋮9\), \(2493⋮9\)và \(351⋮9\)
Để \(A⋮9\)thì \(x⋮9\)
Vậy \(x\)phải là STN chia hết cho 9 thì \(A⋮9\)
Để \(A⋮̸9\)thì \(x⋮̸9\)
Vậy \(x\)phải là STN không chia hết cho 9 thì \(A⋮̸9\)
\(A=963+2493+351+x\)với \(x\inℕ\). Tìm điều kiện của x để
* A chia hết cho 9
Ta có : \(963⋮9\); \(2493⋮9\); \(351⋮9\)
Để A chia hết cho 9 => \(963+2493+351+x⋮9\)
=> x cũng phải chia hết cho 9
* A không chia hết cho 9
Ta có : \(963⋮9\); \(2493⋮9\); \(351⋮9\)
Để A không chia hết cho 9 => \(963+2493+351+x⋮̸9\)
=> x không chia hết cho 9
315315315 chia hết 7\(\Rightarrow\)a = 5