Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(n+3\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)+2⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
2) \(\Rightarrow2\left(3n+4\right)+4⋮\left(3n+4\right)\)
\(\Rightarrow\left(3n+4\right)\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0\right\}\)
3) \(\Rightarrow2\left(3n+6\right)-9⋮\left(3n+6\right)\)
\(\Rightarrow\left(3n+6\right)\inƯ\left(9\right)=\left\{-9;-3;-1;1;3;9\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{1\right\}\)
3n + 5 ⋮ n (n \(\ne\) -5)
3n + 5 ⋮ n
5 ⋮ n
n \(\in\) Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 18 - 5n ⋮ n (n \(\ne\) 0)
18 ⋮ n
n \(\in\) Ư(18) = { -18; -9; -6; -3; -2; -1; 1; 2; 3; 6; 9; 18}
Vì n \(\in\) {1; 2; 3; 6; 9; 18}
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
Mà n là số tự nhiên
⇒ n ∈ {2}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
Mà n là số tự nhiên
⇒ n ∈ {2; 0; 3; 4; 7}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
Mà n là số tự nhiên
⇒ n ∈ {0; 2}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
n+ 3\(⋮\) n- 1.
n- 1\(⋮\) n- 1.
=>( n+ 3)-( n- 1)\(⋮\) n- 1.
n+ 3- n+ 1\(⋮\) n- 1.
4\(⋮\) n- 1.
=> n- 1\(\in\) Ư( 4)={ 1; 2; 4}.
Trường hợp 1: n- 1= 1.
n= 1+ 1.
n= 2.
Trường hợp 2: n- 1= 2.
n= 2+ 1.
n= 3.
Trưởng hợp 3: n- 1= 4.
n= 4+ 1.
n= 5.
Vậy n\(\in\){ 2; 3; 5}.