Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 9^2k = (9^2)^k= (......1)^k=(.....1)
9^2k+1=9^2k+9=(9^2)^k+9=(.....1)^k+9=(....1)+9=(....0)
# chúc học tốt #
\(A=2+2^2+2^3+...2^{2023}\)
\(\Rightarrow A+1=1+2+2^2+2^3+...2^{2023}\)
\(\Rightarrow A+1=\dfrac{2^{2023+1}-1}{2-1}\)
\(\Rightarrow A+1=2^{2024}-1\)
\(\Rightarrow A=2^{2024}-2\)
\(\Rightarrow A=2^{2020}.2^4-2\)
\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\)
Ta thấy :
\(\left(2^{20}\right)^{101}\) có tận cùng là chữ số \(76\)
\(2^4=16\) có tận cùng là chữ số \(6\)
\(\Rightarrow\left(2^{20}\right)^{101}.2^4\) có tận cùng là chữ số \(6\)
\(\Rightarrow A=\left(2^{20}\right)^{101}.2^4-2\) có tận cùng là chữ số 4 \(\left(6-2=4\right)\)
\(4^{2k}=\left(4^2\right)^k=16^k=\left(...6\right)\) ; t/c là 6
\(4^{2k+1}=\left(4^{2k}\right).4=\left(...6\right).4=\left(...4\right)\)
42k=(42)k=16k
do số có chữ số tận cùng là 6 nâng lên lũy thừa nào cũng có tận cùng là 6=>42k có cstc là 6
42k+1=16k.4
do 16k có cstc là 6=>16k.4 có cstc là 4<=>42k+1 có cstc là 4
Ta có:
\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)
\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)
\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)
\(=5^{10}-1\)
=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)
Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)
\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)
\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)
=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)
\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)
=> A > B.
Gọi số cần tìm là x
(x-1) chia hết cho 3 x chia hết cho 3
(x-3) chia hết cho 4 => x chia hết cho 4
(x-1) chia hết cho 5 x chia hết cho 5
x nhỏ nhất x nhỏ nhất
Vì số dư của 4 khác của 3 và 5 nên sẽ tìm BCNN(3,5) trước
3=3
5=5
BCNN(3,5)=15
BNN khác 0 và chính nó của 4 là 16
x = 15 + 16
x= 31
giải thích
Lúc đầu ta tìm BCNN ( 3 ,5 ) vì muốn tìm ra số dư của 4
BCNN ( 3 ,5) = 15
15 : 4 = 3 dư 3
Nếu lấy số 15 là x của bài sẽ không được vì đề bài yêu cầu x chia cho 3 ,5 dư 1 vì vậy ta phải tìm thêm BNN của 4
BNN của 4 = 16
16 là số chia cho 3 , cho 5 dư 1 nên được chọn
Cuối cùng ta cộng hai kết quả sẽ bằng x cần tìm
Cảnh báo : Phần giải thích không cần ghi
Chúc em học giỏi
Nếu muốn học thêm toán em liên hệ SDT:0909578895
781 . 152018
781\(\equiv\)( mod 10 )
710\(\equiv\)9 ( mod 10 )
780\(\equiv\)1 ( mod 10 )
781\(\equiv\)7 ( mod 10 )
Vậy chữ số tận cùng của 781 là 1
152018\(\equiv\)( mod 10 )
158\(\equiv\)5 ( mod 10 )
1580\(\equiv\)5 ( mod 10 )
15960\(\equiv\)5 ( mod 10 )
151920\(\equiv\)5 ( mod 10 )
152000\(\equiv\)5 ( mod 10 )
152007\(\equiv\)5 ( mod 10 )
152014\(\equiv\)5 ( mod 10 )
152018\(\equiv\)5 ( mod 10 )
Vậy chữ số tận cùng của 152018 là 5
\(\Rightarrow\)Chữ số tận cùng của 781 . 152018 là 7 . 5 = 35
Vậy chữ số tận cùng của 781 . 152018 là 5
Hk tốt
Những số có chữ số tận cùng là 2,4,8 khi nâng lên mũ 4 có tận cùng là 6
Thật vậy
\(4^{2k}=2^{4k}=...6\)
\(4^{2k+1}=2^{4k+2}=2^{4k}.4=\left(...6\right).4=...4\)
ta có 4^2k=16^k=.......6
4^2k+1=8^k.4=.....6.4=.....4