K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Gọi d là ƯC(  n+ 1, 2n + 5  )

 \(n+1\Rightarrow2.\left(n+1\right)⋮d\Rightarrow\)\(2n+2⋮d\)

\(2n+5⋮d\)

\(\Rightarrow2n+5-\left(2n+2\right)⋮d\)

\(\Rightarrow5-2⋮d\)

\(\Rightarrow3⋮d\)

\(\Rightarrow3⋮4\)

\(\Rightarrow\)không thể được.

Vậy 4 không thể là ước chung của n+1 và 2n + 5 

11 tháng 11 2017

a,xem lại lí thuyết nhé,theo mh thì 2 số liên tiếp có ước chung là 1

2 số chẵn có ước chung là 2

11 tháng 11 2017

Gọi UCLN(a,a+1)là b,ta có:

a\(⋮\)b,a+1\(⋮\)b

\(\Rightarrow\)a+1-a\(⋮\)b

\(\Rightarrow\)1\(⋮\)b

\(\Rightarrow\)b=1

Vậy UCLN(a,a+1)=1

Vậy UC(a,a+1)\(\in\){1}

b, Tương tự như câu trên

21 tháng 9 2021

1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N.  Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau

2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5

22 tháng 9 2021

Quá dễ

9 tháng 10 2015

a) Gọi d = ƯC(n + 3; 2n + 5) 

=> n + 3 chia hết cho d ; 2n + 5 chia hết cho d

=> 2(n+3) - (2n + 5) chia hết cho d

=> 2n + 6 - 2n - 5 chia hết cho d => 1 chia hết cho d => d = 1

Vậy......

b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4 

=> 4 không thể là ước chung của 2n + 5 và n + 1

Vậy...

bài làm

1)Gọi a = ƯC(n + 3; 2n + 5) 

=> n + 3 chia hết cho a ; 2n + 5 chia hết cho a

=> 2(n+3) - (2n + 5) chia hết cho a

=> 2n + 6 - 2n - 5 chia hết cho a => 1 chia hết cho a => a= 1

Vậy...................

2) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4 

=> 4 không thể là ước chung của 2n + 5 và n + 1

Vậy........................

hok tốt

gọi ƯC(2n-1,3n+1) là d (d khác 0)  

Ta có 2n-1 chia hết cho d

=> 3(2n-1) chia hết cho d <=> 6n-3 chia hết cho d  (1)

Lại có 3n+1 chia hết cho d 

=> 2(3n+1) chia hết cho d <=> 6n+2 chia hết cho d (2) 

Từ (1) và (2) => (6n+2-6n+3) chia hết cho d <=> 5 chia hết cho d 

=> d là ước của 5 

=> d=-1,1,-5,5 

=> ước chung của 2n-1 và 3n+1 là -1,1,-5,5

10 tháng 11 2020

1. Gọi d là ước chung của n+3 và 2n+5

Ta có: n+3 \(⋮\)d , 2n+5\(⋮d\)

=> (2n+6)-(2n+5) chia hết cho d=> 1 chia hết cho d

Vậy ƯC của n+3 và 2n+5 là 1

2. giả sử 4 là ƯC của n+1 và 2n+5

Ta cs: n+1 \(⋮\)4 , 2n+5\(⋮\)4

=> (2n+5)-(2n+2) chia hết cho 4=> 3 chia hết cho 4(vô lý)

Vậy số 4 không thể là ƯC của n+1 và 2n+5.

3 tháng 12 2020

Bạn ghét những đứa đặt tên dài, cậu có thể giải thích tại sao ở câu 1, n + 3=2n+6 được chứ, cả câu 2 n+1=2n+5 nữa. Cảm ơn!