K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)

à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha

4 tháng 5 2016

cănx thôi hay căn (x(2+y))

4 tháng 5 2016

x=1/4

y=1/2

8 tháng 10 2018

Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)

\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\

=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)

=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)

ÁP dụng BĐT cô si

\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)

\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)

\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)

=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)

=> MinQ=64 khi x=y=z=a/3

1 tháng 3 2017

P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))

=> P(0) = c = m2

P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))

=> a + b = k2 - c = k2 - m2 là số nguyên (*)

P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))

=> 4a + 2b + m2 = n2

=> 4a + 2b = n2 - m2 là số nguyên (1)

Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên

=> 2a nguyên => a nguyên

Kết hợp với (*) => b nguyên

Từ (1) => n2 - m2 chẵn (2)

=> (n - m)(n + m) chẵn

Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)

Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)

hay n2 - m2 chia hết cho 4

Kết hợp với (1) => \(2b⋮4\)

=> b chia hết cho 2 => b chẵn

Ta có đpcm

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html