Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))
=> P(0) = c = m2
P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))
=> a + b = k2 - c = k2 - m2 là số nguyên (*)
P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))
=> 4a + 2b + m2 = n2
=> 4a + 2b = n2 - m2 là số nguyên (1)
Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên
=> 2a nguyên => a nguyên
Kết hợp với (*) => b nguyên
Từ (1) => n2 - m2 chẵn (2)
=> (n - m)(n + m) chẵn
Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)
Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)
hay n2 - m2 chia hết cho 4
Kết hợp với (1) => \(2b⋮4\)
=> b chia hết cho 2 => b chẵn
Ta có đpcm
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Cô si:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)
Tương tự với 2 cục còn lại, công theo vế:
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1^2}{\sqrt{a}}+\frac{2^2}{\sqrt{b}}+\frac{3^2}{\sqrt{c}}\ge\frac{\left(1+2+3\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\frac{1}{\sqrt{a}}=\frac{2}{\sqrt{b}}=\frac{3}{\sqrt{c}}\\\sqrt{a}+\sqrt{b}+\sqrt{c}=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=1\\\sqrt{b}=2\\\sqrt{c}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=9\end{matrix}\right.\)
Em có cách giải khác nhưng không chắc lắm!
Nếu \(c\ge\frac{13}{3}\) thì: \(60=5a^2+2abc+4b^2+3c^2\ge5a^2+\frac{26}{3}ab+4b^2+3c^2\)
\(=\frac{1}{45}\left(15a+13b\right)^2+\frac{11b^2}{45}+3c^2\)
\(>\frac{\left(15a+13b\right)^2}{45}+3c^2=\frac{\left(15a+13b\right)^2+135c^2}{45}\)
\(>\frac{\left(13a+13b\right)^2+\left(11c\right)^2}{45}\ge\frac{\left(13a+13b+11c\right)^2}{45}>\frac{121\left(a+b+c\right)^2}{45}\)
\(\Rightarrow A=a+b+c< \sqrt{\frac{60.45}{121}}< 4,8< 6\)
Nếu \(0< c< \frac{13}{3}\):
\(22\left(6-A\right)=22\left[6-\left(a+b+c\right)\right]\)
\(=\frac{1}{5}\left[\left(5a+bc-11\right)^2+\frac{5\left(c-3\right)^2\left(c+3\right)\left(13-3c\right)}{20-c^2}+\frac{(bc^2 - 20b - 11c + 55)^2}{20-c^2}\right]\ge0\)
(chú ý phân tích chỗ này chỉ đúng với a, b, c thỏa mãn giả thiết)
Do đó \(A\le6\). Tóm lại, trong mọi trường hợp của c, A luôn \(\le6\).
Vậy Max A = 6 khi \(a=1;b=2;c=3\)
Trong đề thi vào lớp 10 tỉnh Thanh Hóa bài này có đáp án rồi.
Từ phương trình :\(5a^2+2abc+4b^2+3c^2=60\)(1) và a, b , c là các số dương
=> \(4b^2< 60;3c^2< 60\)
=> \(\left(15-b^2\right)>0;\left(20-c^2\right)>0\)
(1) <=> \(5a^2+2bc.a+4b^2+3c^2-60=0\)
Xem đẳng thức trên phương trình bậc 2 có tham số là b và c ẩn là a.
Khi đó: \(\Delta'=\left(bc\right)^2-5\left(4b^2+3c^2-60\right)\)
\(=\left[\left(bc\right)^2-20b^2\right]-\left(15c^2-300\right)\)
\(=b^2\left(c^2-20\right)-15\left(c^2-20\right)=\left(b^2-15\right)\left(c^2-20\right)>0\)( theo trên )
=> phương trình (1) có hai nghiệm phân biệt:
\(a=\frac{-bc\pm\sqrt{\left(b^2-15\right)\left(c^2-20\right)}}{5}\)
Xét nghiệm \(a=\frac{-bc+\sqrt{\left(b^2-15\right)\left(c^2-20\right)}}{5}\)
\(\le\frac{-bc+\frac{1}{2}\left(15-b^2+20-c^2\right)}{5}=\frac{-\left(b+c\right)^2+35}{10}\)
=> \(a+b+c=\frac{-\left(b+c\right)^2+10\left(b+c\right)+35}{10}\)
\(=\frac{-\left(b+c-5\right)+60}{10}\le\frac{60}{10}=6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}b+c-5=0\\b^2-15=c^2-20\\a+b+c=6\end{cases}}\)<=> \(\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\) thử lại thỏa mãn ( 1)
Vậy: min A = 6 tại a = 1; b = 2; c = 3