\(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0\)

 

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\)      (*)

\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\)     \(\left(1\right)\)

Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)

\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)

\(\Rightarrow1-x⋮d\)

\(\Rightarrow1-x+x+1⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ

\(\Rightarrow d=\pm1\)

\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau

Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương

Giả sử: + \(x^2+1=m^2\)

\(\Rightarrow m^2-x^2=1\)

\(\Rightarrow x=0\)(bạn tự tính)

    +\(x+1=n^2\)

\(\Rightarrow x=0\)(bạn tự tính)

Thay x=0 vào phương trình (*)=> y=-1;0

Vậy.......

20 tháng 8 2018

sao ko ai tra loi het vay

19 tháng 11 2017

\(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0;ĐK:x\ge4\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}-\sqrt{x+4}\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)

\(\leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)

\(\leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)

\(\leftrightarrow14\sqrt{x^2+9x}=-14x-45\)

\(\leftrightarrow\hept{\begin{cases}196.x^2+9x=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}\leftrightarrow x=\frac{225}{56}}\) loại

-> PT vô nghiệm

lớp 6 đã có phương trình đâu