Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA PHAN TICH CAI PHAN DAU TRUOC
=X(Y+3)+2Y=-6(VI 0-6)
=X(Y+3)+2(Y+3)-6=-6
=X(Y+3)+2(Y+3)=-6+6
(Y+3)(X+2)=0
VI X,Y LA SO NGUYEN AM
(Y+3)VA (X+2)DEU BANG 0
Y=-3CON X=-2
\(xy-x-2y=21\)
\(\Rightarrow x\left(y-1\right)=21+2y\)
\(\Rightarrow x=\dfrac{2y+21}{y-1}\)
Vì \(x\) là số nguyên nên \(\left(2y+21\right)⋮\left(y-1\right)\)
\(\Rightarrow\left(2y-2+23\right)⋮\left(y-1\right)\)
\(\Rightarrow23⋮\left(y-1\right)\)
\(\Rightarrow y-1\inƯ\left(23\right)\)
\(\Rightarrow y-1\in\left\{1;-1;23;-23\right\}\)
\(\Rightarrow y\in\left\{2;0;24;-22\right\}\)
\(\Rightarrow x\in\left\{25;-21;3;1\right\}\)
-Vậy các cặp số \(\left(x;y\right)\) là \(\left(2;25\right)\), \(\left(0;-21\right)\), \(\left(24;-21\right)\), \(\left(-22;1\right)\).
\(\Leftrightarrow y\left(x-2\right)+\left(x-2\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=1\)
TH1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy (x;y) = (3;0); ( 1;-2)
Lời giải:
$xy+3x-2y=11$
$x(y+3)-2(y+3)=5$
$(y+3)(x-2)=5$
Vì $x,y$ nguyên nên $x-2, y+3$ cũng nguyên. Mà tích của chúng bằng 5 nên ta xét các TH sau:
TH1; $x-2=1, y+3=5\Rightarrow x=3; y=2$
TH2: $x-2=-1, y+3=-5\Rightarrow x=1, y=-8$
TH3: $x-2=5, y+3=1\Rightarrow x=7; y=-2$
TH4: $x-2=-5, y+3=-1\Rightarrow x=-3; y=-4$
xy + 3x-2y=11
<=> x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
suy ra (x-2) và (y+3) là các ước nguyên của 5.
Th1. x-2=1 <=>x=3
.......y+3=5 <=> y=2
Th2 x-2=-1 <=> x=1
.......y+3=-5 <=> y= -8
Th3. x-2=5 <=> x=7
.......y+3=1 <=> y= -2
Th4. x-2= -5 <=> x= -3
.......y+3= -1 <=> y= -4
Vậy (x,y) = (3, 2); (1, -8); (7, -2); (-3, -4)
mình nghĩ vậy.
Ta có: \(3x-2y+xy=11\)
\(\Leftrightarrow\left(xy-2y\right)+\left(3x-6\right)=5\)
\(\Leftrightarrow y\left(x-2\right)+3\left(x-2\right)=5\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=5=1\cdot5=\left(-1\right)\cdot\left(-5\right)\)
Ta lập bảng sau:
Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(3;2\right);\left(7;-2\right);\left(1;-8\right);\left(-3;-4\right)\)