K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

a) 

Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)

\(\Leftrightarrow x^3-1+x+1⋮x-1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)

\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)

\(\Leftrightarrow x-1+2⋮x-1\)

Mà \(x-1⋮x-1\)

\(\Rightarrow2⋮x-1\)

\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)

Vậy \(x\in\left\{-1;0;2;3\right\}\)

27 tháng 9 2019

b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)

\(\Leftrightarrow2x^2-8x+10⋮2x-1\)

\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)

\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)

Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)

\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)

Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)

\(\Leftrightarrow2x-14⋮2x-1\)

\(\Leftrightarrow2x-1-13⋮2x-1\)

Mà \(2x-1⋮2x-1\)

\(\Rightarrow13⋮2x-1\)

\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm 

11 tháng 11 2023

giúp với chiều thi rồi

 

11 tháng 11 2023

giúp với :(((

 

23 tháng 7 2020

a)  \(ĐKXĐ:x\ne\pm2\)

\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)

\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)

\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)

\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(\Leftrightarrow P=\frac{x+2}{x-2}\)

b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)

Loại \(x=-2\)

\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)

Vì P là số nguyên tố nên

\(P\in\left\{5;3;2\right\}\)

Vậy để P là số nguyên tố thì  \(x\in\left\{3;4;6\right\}\)

a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)

b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)