Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-1=2y^2\)
Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ
\(\Rightarrow x=2k+1\)
Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)
Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
\(\Rightarrow y=2\)
\(\Rightarrow x^2-9=0\Rightarrow x=3\)
Vậy \(\left(x;y\right)=\left(3;2\right)\)
Ta có: x:y:z =4:5:6
⇒\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}\)
⇒\(\dfrac{x^2}{16}=\dfrac{2y^2}{50}=\dfrac{z^2}{36}\)
⇒\(\dfrac{x^2-2y^2+z^2}{16-50+36}=\dfrac{18}{2}=9\)
\(\dfrac{x}{4}=9\Rightarrow x=36\)
\(\dfrac{y}{5}=9\Rightarrow y=45\)
\(\dfrac{z}{6}=9\Rightarrow z=54\)
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100
117=(y+x)(y-x)=3.39=39.3=9.13=13.9
Ta cá bảng
x-y | 3 | 39 | 9 | 13 |
x+y | 39 | 3 | 13 | 9 |
x | 21 | 21 | 11 | 11 |
y | 18 | -18 | 2 | -2 |
chỉ có x=11 và y=2 là số nguyên tố
vậy ....
=> x^2 = 2y^2 + 1
+, Nếu y=3 => ko tồn tại x thuộc p
+, Nếu y khác 3 => y ko chia hết cho 3 => y^2 chia 3 dư 1 => 2y^2 chia 3 dư 2
=> x^2 = 2y^2+1 chia hết cho 3
=> x chia hết cho 3 ( vì 3 là số nguyên tố )
=> x = 3
=> y = 2
Vậy x=3 và y=2
Tk mk nha
Ta có: x2 – 2x + 1 = 6y2 -2x + 2
=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do 6y2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8 => 3y2 chia hết cho 4 => y2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5.
Chúc học tốt!