Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2=2y^2+1$ là số lẻ nên $x$ là số lẻ.
$x^2=2y^2+1$
$\Rightarrow x^2-1=2y^2$
$\Rightarrow (x-1)(x+1)=2y^2$
Vì $x$ lẻ nên $x-1, x+1$ đều chẵn
$\Rightarrow (x-1)(x+1)\vdots 4$
$\Rightarrow 2y^2\vdots 4\Rightarrow y^2\vdots 2\Rightarrow y$ chẵn.
Mà $y$ là stn nên $y=2$.
Khi đó: $x^2-1=2y^2=2.2^2=8$
$x^2=8+1=9\Rightarrow x=3$
Vậy $(x,y)=(3,2)$
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Ta có x2−2y2=1→x2−1=2y2
+ Nếu x chia hết cho 3 thì x=3 (vì x là số nguyên tố). Thay vào ta có
32−1=2y2=8→y2=4→y=2
+ Nếu x không chia hết cho 3 thì x có dạng 3k+1 hoặc 3k+2 (k ∈ N)
Với x=3k+1 thì 2y2=x2−1=(x−1)(x+1)=(3k+1−1)(3k+1+1)=3k(3k+2)⋮3
Với x= 3k+2 thì 2y2=x2−1=(x−1)(x+1)=(3k+2−1)(3k+2+1)=(3k+1)(3k+3)=3(3k+1)(k+1)⋮3
Như vậy với mọi x không chia hết cho 3 thì x2−1⋮3→2y2⋮3. Mà (2;3)= 1
Nên y2⋮3. Do 3 là số nguyên tố nên y⋮3. Mà y là số nguyên tố nên y=3
Thay y=3 vào ta có:
x2−1=2.32=18→x2=19→x=19−−√ (không tm)
Vậy chỉ có 1 cặp số (x;y) thỏa mãn là x=3; y=2
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
2y+1 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)