Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 3n ⋮ -2
Vì 3 ⋮̸ -2 nên để 3n ⋮ -2 thì n ⋮ -2
=> n ∈ B(-2)
=> n = -2k (k ∈ N)
Vậy n có dạng -2k (k ∈ N)
b. n + 5 ⋮ 5
=> n + 5 ∈ B(5)
=> n + 5 = 5k (k ∈ N)
=> n = 5k - 5 (k ∈ N)
Vậy n có dạng 5k - 5 (k ∈ N)
c. 6 ⋮ n
=> n ∈ Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n ∈ {1;-1;2;-2;3;-3;6;-6}
d. 5 ⋮ n - 1
=> n - 1 ∈ Ư(5) = {1;-1;5;-5}
=> n ∈ {2;0;6;-4}
e. n + 5 ⋮ n - 2
=> n - 2 + 7 ⋮ n - 2
=> 7 ⋮ n - 2
=> n - 2 ∈ Ư(7) = {1;-1;7;-7}
=> n ∈ {3;1;9;-5}
g. 2n + 1 ⋮ n - 5
=> 2n - 10 + 11 ⋮ n - 5
=> 2(n - 5) + 11 ⋮ n - 5
=> 11 ⋮ n - 5
=> n - 5 ∈ Ư(11) = {1;-1;11;-11}
=> n ∈ {6;4;16;-6}
a) Ta có : n-2017\(⋮\)n-2018
\(\Rightarrow\)n-2018+1\(⋮\)n-2018
Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018
\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)
+) n-2018=-1
n=2017 (thỏa mãn)
+) n-2018=1
n=2019 (thỏa mãn)
Vậy n\(\in\){2017;2019}
c) Ta có : 2n-3\(⋮\)2n-5
\(\Rightarrow\)2n-5+2\(⋮\)2n-5
Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5
\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2 (thỏa mãn)
+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3 (thỏa mãn)
+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5 (không thỏa mãn)
+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5 (không thỏa mãn)
Vậy n\(\in\){2;3}
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
2n + 7 \(⋮\)n - 3
\(\Leftrightarrow\)2(n - 3) + 6 + 7 \(⋮\)n - 3
\(\Leftrightarrow\)13\(⋮\)n - 3
\(\Leftrightarrow\)n - 3 \(\in\)Ư(13) = {\(\pm\)1 ;\(\pm\)13}
\(\Leftrightarrow\)n \(\in\){4 ; 2 ; 16 ; - 10}
Ta có: \(2n+7⋮n-3\)
=> \(2\left(n-3\right)+13⋮n-3\)
=> \(13⋮n-3\)
Vì \(n\in Z\Rightarrow n-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta có bảng sau:
n-3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy \(n\in\left\{4;2;16;-10\right\}\)
a) Ta có: n+2 chia hết cho n-3
=>(n-3)+3+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=>n-3 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {4;8;2;-2}
b)Ta có: n-6 chia hết cho n-1
=>(n-1)+1-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {2;6;0;-4}
a) Ta có: n+2 chia hết cho n-3
=>(n-3)+3+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=>n-3 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {4;8;2;-2}
b)Ta có: n-6 chia hết cho n-1
=>(n-1)+1-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {2;6;0;-4}
Ta có: n+2 chia hết n-3
=> n-3+3+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Vì (n-3) chia hết cho n-3 => (n-3)+5 chia hết n-3
<=> 5 chia hết n-3 hay n-3 \(\inƯ\left(5\right)\)
=> n-3\(\in\left\{-5;-1;1;5\right\}\)
=>n \(\in\left\{-2;2;4;8\right\}\)
Vì số vừa chia hết cho 2 và 5 là những số có tận cùng là 0
các số có tận cùng là 0 mà >953 và <984 là:960;970;980
n\(\in\) {960;970;980}
b1: tìm các phần tử chia hết cho bao nhiêu dựa vào đề bài
b2: viết phần tử
\(n+1⋮n+1\)
\(\Rightarrow2n+2⋮n+1\)
\(\Rightarrow2n+2-2n+3⋮n+1\)
\(\Rightarrow5⋮n+1\)\(\Rightarrow n+1\inƯ\left(5\right)=\left[1;5;-1;-5\right]\)
xong rồi lập bảng nhé
vì n^2 chia hết cho n+3
=>n+3 thuộc Ư(n+2)
=>n+3 thuộc{1,-1}
nếu n+3=1 thì:
n=1-3
n=-2
nếu n+3=-1 thì
n=(-1)-3
n=-4
vậy n thuộc{-2;-4}