K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)

=> \(\frac{1}{x}=\frac{1}{6}-\frac{y}{3}\)

=> \(\frac{1}{x}=\frac{1-2y}{3}\)

=> x(1 - 2y) = 3 = 1 . 3 = 3.1 = (-1) . (-3) = (-3) . (-1)

Lập bảng :

1  - 2y 1 -1 3 -3
  x 3 -3 1 -1
  y 0 1 -1 2

Vậy ...

21 tháng 2 2019

\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)

\(\Leftrightarrow\frac{3}{3x}+\frac{xy}{3x}=\frac{1}{6}\)

\(\Leftrightarrow\frac{3+xy}{3x}=\frac{1}{6}\)

\(\Leftrightarrow6\left(3+xy\right)=3x\)

\(\Leftrightarrow2\left(3+xy\right)=x\)

\(\Leftrightarrow6+2xy=x\)

\(\Leftrightarrow6=x-2xy\)

\(\Leftrightarrow6=x\left(1-2y\right)\)

\(\Rightarrow\hept{\begin{cases}x\\1-2y\end{cases}}\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

\(x\)\(-6\)\(-3\)\(-2\)\(-1\)\(1\)\(2\)\(3\)\(6\)
\(1-2y\)\(-1\)\(-2\)\(-3\)\(-6\)\(6\)\(3\)\(2\)\(1\)
\(y\)\(1\)\(\varnothing\)\(2\)\(\varnothing\)\(\varnothing\)\(-1\)\(\varnothing\)\(0\)

Vậy \(x,y\in\left\{\left(-6;-1\right);\left(-3;2\right);\left(3;-1\right);\left(1;0\right)\right\}\)

19 tháng 3 2015

1.1056

2.2;73

3.2;3;6

30 tháng 5 2016

Biến đổi biểu thức tương đương, ta có : x2−12=y2
Lại có : x,y nguyên dương.

⇒x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương)
Ta có biểu thức tương đương : 2k(k+1)=y2(∗)
Để ý rằng: y là 1 số nguyên tố nên y2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là {1 ; y ; y^2}
Từ (*) dễ thấy y2⋮2⇒y=2⇒k=1⇒x=3
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2

30 tháng 5 2016

copy bài như thế này mà tự xưng là chiến thắng sao ko bít nhục à VICTOR_Nobita Kun

10 tháng 2 2020

Tham khảo câu hỏi tương tự  : https://olm.vn/hoi-dap/detail/2739228605.html

18 tháng 1 2018

Ta có:

( x + 1 ) . yz - xyz = 2

\(\Rightarrow\)xyz + yz - xyz = 2

\(\Rightarrow\) yz = 2

\(\Rightarrow\orbr{\begin{cases}y=1;z=2\\y=2;z=1\end{cases}}\)

Vậy y ; z bằng 2 hoặc 1 và x là số nguyên

18 tháng 1 2018

Theo đề ra ta có :

(x+1)yz - xyz = 2

\(\Rightarrow\) xyz + yz - xyz = 2

\(\Rightarrow\) yz = 2

Mà x , y , z là số nguyên

\(\Rightarrow\)\(\orbr{\begin{cases}y=1,z=2\\y=2,z=1\end{cases}}\)

Nhận xét mọi x nguyên thỏa mãn 

Vậy x là số nguyên ; y=1 ; z = 2 và x là số nguyên ; y = 2 ; z = 1

30 tháng 3 2022

Giúp nhanh đi mà pls

30 tháng 1 2019

\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)

\(\text{TH1 : z = 0}\)

\(\Rightarrow2016^0+2017^y=2018^x\)

\(\Rightarrow1+2017^y=2018^x\)

\(\Rightarrow y=1;x=1\)

\(\text{TH2 : y = 0 }\)

\(\Rightarrow2016^z+2017^0=2018^x\)

\(\Rightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ khi x }\ge1\)

\(\text{Vế phải là số chẵn khi x }\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Rightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)

29 tháng 5 2016

Ta thấy 11x⋮6 nên x⋮6.

Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :

   y = 20 -11k3

Tách guyên giá trị nguyên của biểu thức này :

   y = 7 - 4k +k - 13

Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :

= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6

Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.

 Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :

{=18t+6y=3−11t vớ i t là số nguyên tùy ý

 mk nha các bạn !!!

29 tháng 5 2016

Thành lập hội VICTOR_TÊN NHA