K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2020

a) Ta có: \(A=\frac{2x-5}{x+1}=\frac{\left(2x+2\right)-7}{x+1}=2-\frac{7}{x+1}\)

Để A nguyên => \(\frac{7}{x+1}\inℤ\) => \(\left(x+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

=> \(x\in\left\{-8;-2;0;6\right\}\)

b) Ta có: \(B=\frac{x+1}{3x+1}\) => \(3B=\frac{3x+3}{3x+1}=\frac{\left(3x+1\right)+2}{3x+1}=1+\frac{2}{3x+1}\)

Để B nguyên => \(\frac{2}{3x+1}\inℤ\Rightarrow\left(3x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(3x\in\left\{-3;-2;0;1\right\}\) => \(x\in\left\{-1;-\frac{2}{3};0;\frac{1}{3}\right\}\)

Mà x nguyên => \(x\in\left\{-1;0\right\}\)

Thử lại ta thấy đều thỏa mãn

Vậy \(x\in\left\{-1;0\right\}\)

27 tháng 8 2020

Ta có : \(\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=2-\frac{7}{x+1}\)

Vì \(2\inℤ\Rightarrow\frac{-7}{x+1}\inℤ\Rightarrow-7⋮x+1\Rightarrow x+1\inƯ\left(-7\right)\Rightarrow x+1\in\left\{1;7;-1;-7\right\}\)

=> \(x\in\left\{0;6;-2;-8\right\}\)

Vậy  \(x\in\left\{0;6;-2;-8\right\}\) 

b) Để B nguyên

=> 3B nguyên

Khi đó 3B = \(\frac{3\left(x+1\right)}{3x+1}=\frac{3x+3}{3x+1}=\frac{3x+1+2}{3x+1}=1+\frac{2}{3x+1}\)

Vì \(1\inℤ\Rightarrow\frac{2}{3x+1}\inℤ\Rightarrow2⋮3x+1\Rightarrow3x+1\inƯ\left(2\right)\Rightarrow3x+1\in\left\{1;2;-2;-1\right\}\)

=> \(3x\in\left\{0;1;-3;-2\right\}\Rightarrow x\in\left\{0;\frac{1}{3};-1;\frac{-2}{3}\right\}\)

Vì x nguyên 

=> \(x\in\left\{0;-1\right\}\)

Vậy \(x\in\left\{0;-1\right\}\)

14 tháng 12 2022

`a)A` nguyên `<=>x+2 in Ư_5`

  Mà `Ư_5 ={+-1;+-5}`

`@x+2=1=>x=-1`

`@x+2=-1=>x=-3`

`@x+2=5=>x=3`

`@x+2=-5=>x=-7`

______________________________________________

`b)B=[x-5]/x=1-5/x`

 `B` nguyên `<=>x in Ư_{5}`

   Mà `Ư_{5}={+-1;+-5}`

 `=>x in {+-1;+-5}`

______________________________________________

`c)C=[x-2]/[x+1]=[x+1-3]/[x+1]=1-3/[x+1]`

   `C` nguyên `<=>x+1 in Ư_3`

  Mà `Ư_3={+-1;+-3}`

`@x+1=1=>x=0`

`@x+1=-1=>x=-2`

`@x+1=3=>x=2`

`@x+1=-3=>x=-4`

______________________________________________

`d)D=[2x-7]/[x+1]=[2x+2-9]/[x+1]=2-9/[x+1]`

  `D` nguyên `<=>x+1 in Ư_9`

 Mà `Ư_9 ={+-1;+-3;+-9}`

`@x+1=1=>x=0`

`@x+1=-1=>x=-2`

`@x+1=3=>x=2`

`@x+1=-3=>x=-4`

`@x+1=9=>x=8`

`@x+1=-9=>x=-10`

23 tháng 12 2022

cách này có phải lập bảng ko bạn

 

 

18 tháng 6 2019

\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)

\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)

\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Xét các trường hợp rồi tìm được x thôi :>

\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)

\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)

d, TT

20 tháng 6 2019

YRTSCEYHTFGELCWAMTR.HUNYLA.INBYRUVIQYQNTUNHCUYTBSEUITBVYIQNVIALVTVANYUVLNAUTGUYVTUEVUEATWEHVUTSIOERHUYDBUHEYVGYEGYEHTHGERTGVRYT

Để A có giá trị nguyên thì 2x+3 phải chia hết cho x-1

=>2(x-1)+5 chia hết cho x-1

=>x-1 thuộc Ư(5)={1;5;-1;-5}

+, x-1=1 =>x=2

+,....

Còn lại tự làm nha bn

19 tháng 3 2020

a, để 2x + 3/x - 1 nguyên

=> 2x + 3 ⋮ x - 1

=> 2x - 2 + 5 ⋮ x - 1

=> 2(x - 1) + 5 ⋮ x - 1

=> 5 ⋮ x - 1

=> x - 1 thuộc Ư(5)

=> x - 1 thuộc {-1; 1; -5; 5}

=> x thuộc {0; 2; -4; 6}

b, đề 3x - 4/x + 1 nguyên

=> 3x - 4 ⋮ x + 1

=> 3x + 3 - 7 ⋮ x + 1

=> 3(x + 1) - 7 ⋮ x + 1

=> 7 ⋮ x + 1

21 tháng 7 2019

a, Để phân số đạt giá trị nguyễn 

\(\Rightarrow x+1⋮x-2\)

\(\Rightarrow x-2+3⋮x-2\)

mà \(x-2⋮x-2\Rightarrow3⋮x-2\)

\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{3;5\pm1\right\}\)

21 tháng 7 2019

b,Tương tự :

\(2x-1⋮x+5\)

\(\Rightarrow2x+10-11⋮x+5\)

\(2\left(x+5\right)-11⋮x+5\)

mà \(2\left(x+5\right)⋮x+5\Rightarrow11⋮x+5\)

\(\Rightarrow x+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(x\in\left\{-4;\pm6;-16\right\}\)

30 tháng 9 2019

2. Câu hỏi của Hoàng Lê Như Ý - Toán lớp 6 - Học toán với OnlineMath

16 tháng 2 2020

2/

Để 6x + 5/2x - 1 đạt giá trị nguyên thì:

     6x + 5 chia hết cho 2x - 1

=> (6x - 3) + 8 chia hết cho 2x - 1

=> [3(2x - 1)] + 8 chia hết cho 2x - 1

Vì 2x - 1 chia hết cho 2x - 1

=> [3(2x - 1)] chia hết cho 2x - 1

=> 8 chia hết cho 2x - 1

Hay 2x - 1 thuộc Ư(8) = {1;-1;2;-2;4;-4;8;-8}

=> 2x thuộc {2;0;3;-1;5;-3;9;-7}

=> x thuộc {1;0;3/2;-1/2;5/2;-3/2;9/2;-7/2}

Mà x thuộc Z

Do đó: x thuộc {1;0}

*tk giúp mình nhá 😉*

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản

22 tháng 12 2021

c: Để C nguyên thì \(x^2-3\in\left\{-1;1;5\right\}\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

22 tháng 12 2021

\(b,B=\dfrac{2x-1}{x-1}=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\)

Do \(2\in Z\Rightarrow\)\(\dfrac{1}{x-1}\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(x-1\)\(1\)\(-1\)
\(x\)\(2\)\(0\)