Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
x.y.y.z.x.z =1/3.(-2/5).(-3/10)=1/25
nên (x.y.z)^2 =1/25
+) x.y.z=1/5 nên x= 1/5:1/3=3/5
y=1/5:(-2/5)=-1/2
z=1/5:(-3/10)=-2/3
+)x.y.z = -1/5 nên x=-1/5 :1/3 =-3/5
y= -1/5:(-2/5) =1/2
z=-1/5:(-3/10)=2/3.
sau đó bạn tự kết luận nhé
Từ đề bài ta có: \(\left(x.y.z\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow\orbr{\begin{cases}xyz=\frac{1}{5}\\xyz=-\frac{1}{5}\end{cases}}\)
Với \(xyz=\frac{1}{5}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{2}{3}\\z=\frac{3}{5}\end{cases}}\)
Với \(xyz=\frac{-1}{5}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\\z=\frac{-3}{5}\end{cases}}\)
\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)
xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5
xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5
Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)
a,Ta có: x+y= -7/6 và y+z= 1/4
=>x+y+y+z= -7/6 +1/4
=>x+z+2y= -11/12
=>1/2+2y= -11/12
=>2y= -11/12 -1/2
=>2y= -17/12
=>y= -17/24
Mà x+y=-7/6 =>x= -7/6+17/24= -11/24
x+z=1/2 =>z=1/2+11/24=23/24
Ta có: \(x+y=-\frac{7}{6};y+z=\frac{1}{4};x+z=\frac{1}{2}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow2x+2y+2z=-\frac{28}{24}+\frac{6}{24}+\frac{12}{24}\)
\(\Rightarrow2\left(x+y+z\right)=-\frac{5}{12}\)
\(\Rightarrow x+y+z=-\frac{5}{12}:2\)
\(\Rightarrow x+y+z=-\frac{5}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+y\right)=-\frac{5}{24}+\frac{7}{6}\Rightarrow z=-\frac{5}{24}+\frac{28}{24}=\frac{23}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(y+z\right)=-\frac{5}{24}-\frac{1}{4}\Rightarrow x=-\frac{5}{24}-\frac{6}{24}=-\frac{11}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+z\right)=-\frac{5}{24}-\frac{1}{2}\Rightarrow y=-\frac{5}{24}-\frac{12}{24}=-\frac{17}{24}\)
Vậy \(x=\frac{23}{24};y=-\frac{17}{24};z=-\frac{11}{24}\)
Chuk pạn hok tốt!
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Ta có :
\(xy=\dfrac{1}{3}\) ; \(yz=\dfrac{-2}{5}\)
\(\Leftrightarrow x.y.y.z=\dfrac{1}{3}.\left(\dfrac{-2}{5}\right)\)
\(\Leftrightarrow x.z.y^2=\dfrac{-2}{15}\)
Mà \(x.z=\dfrac{-3}{10}\)
\(\Leftrightarrow\dfrac{-3}{10}.y^2=\dfrac{-2}{15}\)
\(\Leftrightarrow y^2=\dfrac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)
Mà \(xy=\dfrac{1}{3}\)
+)Với \(y=\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{2}\)
+) Với \(y=\dfrac{-2}{3}\Leftrightarrow x=-\dfrac{1}{2}\)
Mà \(xz=\dfrac{-3}{10}\)
+) Với \(x=\dfrac{1}{2}\Leftrightarrow z=\dfrac{-3}{5}\)
+) Với \(x=-\dfrac{1}{2}\Leftrightarrow z=\dfrac{3}{5}\)
Vậy .....