Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)
\(\left(\sqrt{x+y+3}\right)^2=\left(\sqrt{x}+\sqrt{y}-1\right)^2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)
\(\Leftrightarrow\left(1-\sqrt{x}\right)\left(\sqrt{y}-1\right)=-2\)
Xong
Sai nha! Đề cho x, y nguyên chứ không cho căn(x), căn(y) nguyên.
ĐKXĐ: \(x;y\ge\frac{1}{2}\)
Vì x,y khác 0 nên cùng chia 2 vế của pt bđ cho xy ta được
\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)
Ta có: \(\sqrt{2y-1}\le y\)(1)( \(y\ge\frac{1}{2}\))
Thật vậy \(\left(1\right)\Leftrightarrow2y-1\le y^2\)
\(\Leftrightarrow y^2-2y+1\ge0\)
\(\Leftrightarrow\left(y-1\right)^2\ge0\)(Luôn đúng)
Nên (1) đúng \(\Rightarrow\frac{\sqrt{2y-1}}{y}\le1\)
Tương tự \(\frac{\sqrt{2x-1}}{x}\le1\)
Do đó \(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}\le1+1=2\)
Dấu "=" xảy ra <=> x = y = 1 (T/M)
Vậy x = y = 1
Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
a) Cách 1:
\(pt\Leftrightarrow\hept{\begin{cases}y\ge0\\y^2=\left(x+2\right)^2+1\text{ (1)}\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left[y+x+2\right]\left[y-\left(x+2\right)\right]=1\)
\(\Leftrightarrow\left(y+x+2\right)\left(y-x-2\right)=1\)
\(\Rightarrow\hept{\begin{cases}y+x+2=1\\y-x-2=1\end{cases}}\)hoặc \(\hept{\begin{cases}y+x+2=-1\\y-x-2=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(nhận) hoặc \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)(loại)
Cách 2: Để y nguyên thì biểu thức trong căn phải là một số chính phương
\(A=x^2+4x+5=\left(x+2\right)^2+1=t^2+1\)
+Với \(t=0\) thì \(A=1=1^2\), là một số chính phương --> thỏa
+Với \(t>0\), ta có: \(t^2< t^2+1< \left(t+1\right)^2\)(chứng minh bằng biến đổi tương đương)
A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại
+Với \(t< 0\) thì \(t^2< t^2+1< \left(t-1\right)^2\)(chứng minh bằng biến đổi tương đương)
A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại
Vậy t chỉ có thể bằng 0;
\(t=0\Leftrightarrow\hept{\begin{cases}x+2=0\\y=\sqrt{0^2+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a/ y2 = (x2 +2)2 +1 <=> (y-x2 -2)(y+x2 +2)=1 vì x,y nguyên nên 2 đa thức ở vế trái cùng bằng 1 hoặc -1
\(\sqrt{x}+\sqrt{y}=3\sqrt{222}\)
\(3\sqrt{222}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{222}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in Z\)
\(\Rightarrow\) \(a+b=3\)
Xét 4 TH:
- Nếu a = 0 thì b = 3
- Nếu a = 1 thì b = 2
- Nếu a = 2 thì b = 1
- Nếu a = 3 thì b = 0
Từ đó dễ dàng tìm được x, y
áp dụng bdt amgm ta có
\(\sqrt{x}+\frac{1}{\sqrt{x}}\)+\(4\sqrt{y}+\frac{1}{\sqrt{y}}\) \(\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}\) =6
dau = xay ra khi \(\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)
kl (x;y ) =(1;1/4)
ĐKXĐ: \(x;y>0\)
\(\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)
Á dụng bđt Cauchy ta có :
\(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\)
\(4\sqrt{y}+\frac{1}{\sqrt{y}}\ge2\sqrt{4\sqrt{y}.\frac{1}{\sqrt{y}}}=4\)
\(\Rightarrow\sqrt{x}+4\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge6\) Hay \(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=\frac{1}{\sqrt{x}}\\4\sqrt{y}=\frac{1}{\sqrt{y}}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp