Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp
\(2x^2+2y^2+3x-6y=5xy-7\)
\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)
\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)
\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)
\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)
vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)
Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7
Tới đây bạn tự làm nhé
\(\Leftrightarrow y^2=x^2+4x+5\left(y\ge0\right)\\ \Leftrightarrow y^2-\left(x+2\right)^2=1\\ \Leftrightarrow\left(y-x-2\right)\left(y+x+2\right)=1\)
Vì \(x,y\in Z\Leftrightarrow\left(y-x-2\right)\left(y+x+2\right)=1\cdot1=\left(-1\right)\left(-1\right)\)
\(\left\{{}\begin{matrix}y-x-2=1\\y+x+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-x=3\\y+x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\left(tm\right)\)
\(\left\{{}\begin{matrix}y-x-2=-1\\y+x+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-x=1\\y+x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\left(ktm\right)\)
Vậy \(\left(x;y\right)=\left(-2;1\right)\)
\(y\ge0\)
\(y^2=x^2-2x+2\)
\(\Leftrightarrow y^2=\left(x-1\right)^2+1\)
\(\Leftrightarrow y^2-\left(x-1\right)^2=1\)
\(\Leftrightarrow\left(y-x+1\right)\left(y+x-1\right)=1\)
Pt ước số, bạn tự lập bảng
\(\Leftrightarrow2x^2y+y=4x^2+5\)
\(\Leftrightarrow y\left(2x^2+1\right)=4x^2+5\)
\(\Leftrightarrow y=\dfrac{4x^2+5}{2x^2+1}=2+\dfrac{3}{2x^2+1}\)
y nguyên \(\Rightarrow\dfrac{3}{2x^2+1}\) nguyên \(\Rightarrow2x^2+1=Ư\left(3\right)\)
Mà \(2x^2+1\ge1\Rightarrow\left[{}\begin{matrix}2x^2+1=1\\2x^2+1=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=5\\x=1\Rightarrow y=3\\x=-1\Rightarrow y=3\end{matrix}\right.\)
\(\Leftrightarrow x^2-4x+4-y^2=7\)
\(\Leftrightarrow\left(x-2\right)^2-y^2=7\)
\(\Leftrightarrow\left(x-y-2\right)\left(x+y-2\right)=7\)
Phương trình ước số cơ bản, chắc ko cần "chi tiết" hơn nữa đâu