Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
chúc bạn học tốt !
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)
\(\frac{b+a}{ab}=\frac{1}{ab}\)
\(\Rightarrow b+a=1\)
Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
<=> a + b + c = 0 hoặc a = b = c.
Th1: a + b + c = 0
=> a + b = - c ; a + c = -b ; b + c = -a.
Thế vào P :
\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)
\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2: a = b = c. THế vào P
\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Vậy: P = -1 nếu a + b + c = 0
hoặc P = 8 nếu a = b = c.
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)
\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\)hoặc \(P=8\)
điều kiện để tồn tại đẳng thức: a khác b
TH1: a>b suy ra 1/a<1/b suy ra 1/a-1/b <0 suy ra vế trái âm
mà a>b suy ra a-b>0 suy ra 1/(a-b)>0 suy ra vế phải dương
từ đó suy ra với a>b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)
th2: a<b suy ra 1/a>1/b suy ra 1/a-1/b>0 suy ra vế trái dương
mà a<b suy ra a-b<0 suy ra 1/(a-b)<0 suy ra vế phải âm
từ đó suy ra với a<b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)
vậy k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)
1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab
<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0
a+b/2 > \(\sqrt{ab}\)<=> a2 + b2 + 2ab /4 \(\ge\)ab <=> a2 +b2 - ab \(\ge\)ab
Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )
Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài
1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab
<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0
a+b/2 > √ab<=> a2 + b2 + 2ab /4 ≥ab <=> a2 +b2 - ab ≥ab
Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )
Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài
Giả sử tồn tại cặp số (a,b) thỏa \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=> \(\frac{b-a}{a.b}=\frac{1}{a-b}\) => (b-a)(a-b)=ab
=> -(a-b)(a-b) = ab
hay \(-\left(a-b\right)^2=ab\) (*)
Đẳng thức (*) không thể sảy ra vì vế trái luôn luôn âm và vế phải luôn luôn dương.
Vậy không tồn tại cặp số a,b dương nào thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{1}{ab}\)
\(\Rightarrow a+b=1\)
=> a ; b thỏa mãn a+b = 1 ( a;b khác 1)
CTV nghĩa là gì thế Silver bullet???