K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

Giả sử tồn tại cặp số (a,b) thỏa \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

=> \(\frac{b-a}{a.b}=\frac{1}{a-b}\) => (b-a)(a-b)=ab

=> -(a-b)(a-b) = ab

hay \(-\left(a-b\right)^2=ab\) (*)

Đẳng thức (*) không thể sảy ra vì vế trái luôn luôn âm và vế phải luôn luôn dương.

Vậy không tồn tại cặp số a,b dương nào thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

9 tháng 7 2016

điều kiện để tồn tại đẳng thức: a khác b

TH1: a>b suy ra 1/a<1/b suy ra 1/a-1/b <0 suy ra vế trái âm

 mà a>b suy ra a-b>0 suy ra 1/(a-b)>0 suy ra vế phải dương

từ đó suy ra với a>b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

th2: a<b suy ra 1/a>1/b suy ra 1/a-1/b>0 suy ra vế trái dương

 mà a<b suy ra a-b<0 suy ra 1/(a-b)<0 suy ra vế phải âm

từ đó suy ra với a<b thì k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

vậy k có cặp số dương a.b thoả mãn 1/a-1/b bằng 1/(a-b)

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > \(\sqrt{ab}\)<=> a2 + b2 + 2ab /4 \(\ge\)ab <=> a2 +b2 - ab \(\ge\)ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

14 tháng 7 2016

1/a - 1/b = 1/a-b <=> b ( a - b ) - a ( a - b ) = ab

<=> ab - b2 - a2 + ab = ab <=> a2 + b2 - ba = 0

a+b/2 > √ab<=> a2 + b2 + 2ab /4 ab <=> a2 +b2 - ab ab 

Do a,b > 0 nên ab > 0 => a2 + b2 - ab > 0 ( 2 )

Từ 1 và 2 => ko có tồn tại 2 số dương thỏa mãn đề bài

1 tháng 8 2016

Ta có:  \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)\(\Leftrightarrow\)\(\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\)\(\left(b-a\right).\left(a-b\right)=1.ab\)(nhân chéo) 

\(\Leftrightarrow\)\(-\left(a-b\right).\left(a-b\right)=ab\)\(\Leftrightarrow\)\(-\left(a-b\right)^2=ab\)

Lại có: \(-\left(a-b\right)^2\le0\)với mọi a;b nên ab \(\le\)0  

Vậy số cặp số dương a và b là 0 (cặp)

16 tháng 9 2015

1/a-1/b=1/a-b <=>b-a/ab=1/a-b

<=>(b-a).(a-b)=ab

Mà b-a và a-b là 2 số đối nhau -> gtrị của tích là số âm


Lại có a,b là cặp số dương

Nên ko tìm đc a,b