K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2019

Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)

                                   \(=82983+\frac{1}{\frac{242}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{119}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)

                                   \(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)

                                 \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)

                               \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

Cân bằng hệ số ta thu được \(a=82983\)

                                            \(b=1\)

                                            \(c=1\)

                                           \(d=29\)

                                           \(e=1\)

                                          \(f=2\)

                                         \(g=1\)

P/S: e lớp 6 , có gì sai thông cảm ạ =))

9 tháng 3 2019

Incursion giỏi dữ vậy ta

15 tháng 2 2019

Áp dụng bất đẳng thức Cauchy- Schwartz ta có: 

      \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)

Dấu "=" xảy ra khi a = b = c = d = e

13 tháng 11 2018

\(\frac{20102011}{2012}=9991+\frac{119}{2012}=9991+\frac{1}{\frac{2012}{119}}=9991+\frac{1}{16+\frac{108}{119}}=9991+\frac{1}{16+\frac{1}{\frac{119}{108}}}\)

\(=9991+\frac{1}{16+\frac{1}{1+\frac{11}{108}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}}\)

=\(=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}}=9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{4+\frac{1}{2}}}}}}\)

14 tháng 11 2018

Nguyễn Thị Linh Chi có thể hướng dẫn cho mình cụ thể chút nữa được không.

Làm sao để \(\frac{20102011}{2012}\)=9991+\(\frac{119}{2012}\)vậy bạn?

(giúp mik nhé, mik cảm ơn nha!)

9 tháng 7 2019

Hỏi đáp Toán

18 tháng 7 2019

Thanks bạn nha, chữ bạn đẹp quá

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bài 1:

\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

--------------

\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)

\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bài 2:

Bạn tham khảo lời giải tương tự tại link sau:

Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến