Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x - 2y = 0 => x = 2y
thay x = 2y vào pt x + y - 63 = 0 ta có
2y + y - 63 = 0
=> 3y = 63
y = 21 ; x = 42
b) 5x - 11y = 0 => 5x = 11y => x = 11y/5
thay x = 11y/5 vào pt 2x + 3y - 37 = 0 ta có
22y/5 + 3y = 37
=> 22y/5 +15y/5 = 37 ( 15/5 = 3 )
=> 37y/5 = 37
=> y = 5 ; x = 11.5/5 = 11
nhớ cho mình nha
a) x - 2y = 0 => x = 2y
thay x = 2y vào pt x + y - 63 = 0 ta có
2y + y - 63 = 0
=> 3y = 63
y = 21 ; x = 42
b) 5x - 11y = 0 => 5x = 11y => x = 11y/5
thay x = 11y/5 vào pt 2x + 3y - 37 = 0 ta có
22y/5 + 3y = 37
=> 22y/5 +15y/5 = 37 ( 15/5 = 3 )
=> 37y/5 = 37
=> y = 5 ; x = 11.5/5 = 11
nhớ cho mình nha
câu a:
Theo đề, ta có:
\(\frac{x}{2}=\frac{y}{2}\) và x+y=50
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{2}=\frac{x+y}{2+2}=\frac{50}{4}=\frac{25}{2}\)
=>\(\frac{x}{2}=\frac{25}{2}\)
\(\frac{y}{2}=\frac{25}{2}\)
=> x=y =25
làm như vậy đó bạn, cho mình ****, cảm ơn nhìu
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
a: x-y+xy-9=0
=>x+xy-y-1=8
=>(y+1)(x-1)=8
=>(x-1;y+1) thuộc {(1;8); (8;1); (-1;-8); (-8;-1); (2;4); (4;2); (-2;-4); (-4;-2)}
=>(x,y) thuộc {(2;7); (9;0); (0;-9); (-7;-2); (3;3); (5;1); (-1;-5); (-3;-3)}
b: xy-3y-5x+10=0
=>y(x-3)-5x+15=5
=>(x-3)(y-5)=5
=>(x-3;y-5) thuộc {(1;5); (5;1); (-1;-5); (-5;-1)}
=>(x,y) thuộc {(4;10); (8;6); (2;0); (-2;4)}
c: 6xy-3x-2y-1=0
=>3x(2y-1)-2y+1-2=0
=>(2y-1)(3x-1)=2
=>(3x-1;2y-1) thuộc {(2;1); (-2;-1)}
=>(x,y) thuộc {(1;1)}
Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)
Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)
nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)
Vậy \(x=18;y=12;z=9\).
$Toru$
a.\(\begin{cases}x+y=63\\x-2y=0\end{cases}\) => x+y-x+2y=63
=> 3y=63
=> y=21
=>x=42
a, x+y=63 3x=63 x=21 x=21 x=21
x-2y=0 x+y=63 21+y=63 y=63-21 y=42
Vậy phương trình có nghiệm duy nhất là: x=21
y=42
b, 2x+3y=37 10x+15y=185 37y=185 y=5 y=5
5x-11y=0 10x-22y=0 5x-11y=0 5x-11*5=0 x=11
Vậy hệ phương trình trên có một cặp nghiệm duy nhất là x=11
y=5